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Solve linear, quadratic, integer, and nonlinear optimization problems

Optimization Toolbox provides functions for finding parameters that minimize or
maximize objectives while satisfying constraints. The toolbox includes solvers for linear
programming (LP), mixed-integer linear programming (MILP), quadratic programming
(QP), nonlinear programming (NLP), constrained linear least squares, nonlinear least
squares, and nonlinear equations. You can define your optimization problem with
functions and matrices or by specifying variable expressions that reflect the underlying
mathematics.

You can use the toolbox solvers to find optimal solutions to continuous and discrete
problems, perform tradeoff analyses, and incorporate optimization methods into
algorithms and applications. The toolbox lets you perform design optimization tasks,
including parameter estimation, component selection, and parameter tuning. It can be
used to find optimal solutions in applications such as portfolio optimization, resource
allocation, and production planning and scheduling.

Key Features
* Nonlinear and multiobjective optimization of smooth constrained and unconstrained
problems

* Solvers for nonlinear least squares, constrained linear least squares, data fitting, and
nonlinear equations

* Quadratic programming (QP) and linear programming (LP)

* Mixed-integer linear programming (MILP)

* Optimization modeling tools

* Graphical monitoring of optimization progress

* Gradient estimation acceleration (with Parallel Computing Toolbox™)
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First Choose Problem-Based or Solver-Based Approach

There are two approaches to using many Optimization Toolbox solvers: problem-based
and solver-based. Before you start to solve an optimization problem, you must first choose
an approach.

Note The problem-based approach currently applies to:

* Linear programming problems

* Mixed-integer linear programming problems
* Quadratic programming problems

* Linear least-squares problems

If you have any other type of problem, use the solver-based approach “Solver-Based
Optimization Problem Setup”.

Here is a summary of the main differences between the two approaches.

Approaches Characteristics
“Problem-Based Optimization Setup” Easier to create and debug

Only for linear or quadratic problems with linear or i

Represent the objective and constraints symbolically

Solution time is longer because of translation time from p

See the steps in “Problem-Based Workflow” on page 9-2

Basic example: “Mixed-Integer Linear Programming Basic
9-40 or the video Solve a Mixed-Integer Linear Programm:
Optimization Modeling

“Solver-Based Optimization Problem Harder to create and debug
Setup”

Represent the objective and constraints as functions or m:

Solution time is shorter because there is no translation tin
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Approaches Characteristics
To save memory in large problems, allows use of Hessian
Jacobian multiply function. See “Quadratic Minimization v
Hessian” on page 10-19 or “Jacobian Multiply Function wi
on page 11-38.
See the steps in “Solver-Based Optimization Problem Setu
Basic example: “Mixed-Integer Linear Programming Basic
48

See Also

More About

. “Optimization Problem Setup”
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Solve a Constrained Nonlinear Problem

In this section...

“Typical Optimization Problem” on page 1-5

“Problem Formulation: Rosenbrock's Function” on page 1-5
“Define the Problem in Toolbox Syntax” on page 1-6

“Run the Optimization” on page 1-8

“Interpret the Result” on page 1-12

Typical Optimization Problem
This example shows how to solve a constrained nonlinear problem using an Optimization

Toolbox solver. The example demonstrates the typical work flow: create an objective
function, create constraints, solve the problem, and examine the results.

Problem Formulation: Rosenbrock's Function
Consider the problem of minimizing Rosenbrock's function
22 2
F(2)=100(xy -} | +(1-x)?,

over the unit disk, that is, the disk of radius 1 centered at the origin. In other words, find

x that minimizes the function f{x) over the set x7 + x5 <1. This problem is a minimization
of a nonlinear function with a nonlinear constraint.

Note Rosenbrock's function is a standard test function in optimization. It has a unique
minimum value of 0 attained at the point [1, 1]. Finding the minimum is a challenge for
some algorithms because the function has a shallow minimum inside a deeply curved
valley. The solution for this problem is not at the point [1, 1] because that point does not
satisfy the constraint.

This figure shows two views of Rosenbrock's function in the unit disk. The vertical axis is
log-scaled; in other words, the plot shows log(1+f(x)). Contour lines lie beneath the
surface plot.
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Minimum at (0.7864,0.6177)

Rosenbrock's Function, Log-Scaled: Two Views.

1-6

The function f(x) is called the objective function. The objective function is the function you

want to minimize. The inequality x% + x% <1 is called a constraint. Constraints limit the
set of x over which a solver searches for a minimum. You can have any number of
constraints, which are inequalities or equations.

All Optimization Toolbox optimization functions minimize an objective function. To
maximize a function f, apply an optimization routine to minimize -f. For more details
about maximizing, see “Maximizing an Objective” on page 2-39.

Define the Problem in Toolbox Syntax

To use Optimization Toolbox software, express your problem as follows:

1 Define the objective function in the MATLAB® language, as a function file or
anonymous function. This example uses a function file.

2 Define the constraints as a separate file or anonymous function.
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Function File for Objective Function

A function file is a text file that contains MATLAB commands and has the extension .m.
Create a function file in any text editor, or use the built-in MATLAB Editor as in this
example.

1 At the command line, enter:

edit rosenbrock
2 Inthe MATLAB Editor, enter:
%% ROSENBROCK(x) expects a two-column matrix and returns a column vector

The output is the Rosenbrock function, which has a minimum at
(1,1) of value 0, and is strictly positive everywhere else.

o° of

function f = rosenbrock(x)

f = 100*(x(:,2) - x(:,1).72).72 + (1 - x(:,1))."2;

Note rosenbrock is a vectorized function that can compute values for several
points at once. See “Vectorization” (MATLAB). A vectorized function is best for
plotting. For a nonvectorized version, enter:

%% ROSENBROCK1(x) expects a two-element vector and returns a scalar
The output is the Rosenbrock function, which has a minimum at
(1,1) of value 0, and is strictly positive everywhere else.

o® o°

function f = rosenbrockl(x)

f = 100%(x(2) - x(1)72)72 + (1 - x(1))"2;

3  Save the file with name rosenbrock.m.
Function File for Constraint
Constraint functions have the form c(x) < 0 or ceq(x) = 0. The constraint x% + x5 <1 is

not in the form that the solver handles. To have the correct syntax, reformulate the

constraint as x% + x% -1<0.
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Furthermore, the syntax for nonlinear constraints returns both equality and inequality
constraints. This example includes only an inequality constraint, so you must pass an
empty array [] as the equality constraint function ceq.

With these considerations in mind, write a function file for the nonlinear constraint.
1 Create a file named unitdisk.m containing the following code:
function [c,ceq] = unitdisk(x)

c =x(1)"2 + x(2)™2 - 1;
ceq=1[1;

2 Save the file unitdisk.m.

Run the Optimization

There are two ways to run the optimization:

* Use the Optimization app; see “Minimize Rosenbrock's Function Using the
Optimization App” on page 1-8.

* Use command-line functions; see “Minimize Rosenbrock's Function at the Command
Line” on page 1-11.

Minimize Rosenbrock's Function Using the Optimization App

Note The Optimization app warns that it will be removed in a future release. For
alternatives, see “Optimization App Alternatives” on page 5-15.

1  Start the Optimization app by entering optimtool at the command line. For more
information about this tool, see “Optimization App” on page 5-2.
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-
4\ Optimization Tool

MNenlinear constraint function:
Derivatives: Approximated by solver  +

Run solver and view results

Constraint tolerance: @ Use default: 1e-6

) Specify:

SQP constraint tolerance: (@ Use default: 1e-6

Specify:
R . Unboundedness threshold: @ Use default: -1e20
Current iteration: Clear Results
L ) Specify:
|i| [ =l Function value check
= ||| [C] Error if user-supplied function returns Inf, NaN or c
AW
Final peint: [ El User-supplied derivatives
Validate user-supplied derivatives
Hessian sparsity pattern: @) Use default: sparse(one
Specify:
Hessian multiply function: @ Use default: No multipl
Specify:
4 L
(=T tael darinsthiee
4| i | ] 4] ([ | +

Options

+ Stopping criteria

» Function value check

¥ User-supplied derivatives

b Approximated derivatives

¥ Hessian

F Algorithm settings

¥ Inner iteration stopping criteria
¥ Plot functions

b Qutput function

¥ Display to command window

Suggested Mext Steps

B Overview of Next Steps

File  Help
Problem Setup and Results Options Quick Reference <
r = = — 7 [ El Stopping criteria - ol
Solver: fmincon - Constrained nonlinear minimizati... v ¥y
) . - 1 || Max iterations: @ Use default: 1000 fmincon Solver
Algorithm: | Interior point )
Problem ©) Speify: Flnd.a minimum ofa coqstralneq nmjllnea.r
) . multivariable function using the interior-poil
Objective function: v Max function evaluations: @ Use default: 3000 _ )
o r - . = || [Click to expand the section below correspc
Derivatives: | Approximated by solver = @ Specity: our task.
Start point: _
p Xtolerance: @ Use default: 1e-10 Problem Setup and Results
» .
Constraints: © Specify Solver and Algorithm
Linear inequalities: A b _ ||| Problem
Function tolerance: @ Use default: 1e-6 )
Linear equalities: Aeq: beq: i > Constraints
D) Specify: .
Bounds: L Upper: ¥ Run solver and view results

m

B When the Solver Fails
F When the Solver Might Have Succeedec
F When the Solver Succeeds

More Information
4 | 1 r

The default Solver, fmincon - Constrained nonlinear minimization, is

selected. This solver is appropriate for this problem because Rosenbrock's function is
nonlinear, and the problem has a constraint. For more information about choosing a
solver, see “Optimization Decision Table” on page 2-6.

The default Algorithm, Interior point, is also selected.

2 In the Objective function box, enter @rosenbrock. The @ character indicates the
function handle (MATLAB) of the file rosenbrock.m.
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3 Inthe Start point box, enter [0 O] to specify the initial point where fmincon
begins its search for a minimum.

4 [n the Nonlinear constraint functionbox, enter @unitdisk, the function handle of
unitdisk.m.

Ensure that your Problem Setup and Results pane matches this figure.

Problem Setup and Results

Solver: fmincon - Constrained nonlinear minimization -
Algorithr: | Interior point -
Problem

Objective function: | @rosenbrock -
Derivatives:  Approximated by solver =

Start point: [0a]

Constraints:

Linear inequalities: A b
Linear equalities: Aeq: beg:
Bounds: Lower: Upper

Monlinear constraint function: | @unitdisk

Derivatives: Approximated by solver -

5 Inthe Options pane, under Display to command window (at the bottom of the
pane), select iterative from the Level of display list. (If you do not see the option,
click ® Display to command window.) This setting shows the progress of fmincon
in the command window.

=1 Display to command window

Level of display: _Eiterative

[
Lg”
[ Show diagnostics
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6 In the Problem Setup and Results pane, under Run solver and view results, click
Start.

Run salver and view results

Start k Pause Stop
Current iteration: Clear Results

The following message appears in the Run solver and view results box:

Optimization running.
Objective function value: 0.04567482475812774
Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,
and constraints are satisfied to within the default value of the constraint tolerance.

Your objective function value can differ slightly, depending on your computer system and
version of Optimization Toolbox.

The message tells you that:

* The search for a constrained optimum ended because the derivative of the objective
function is nearly 0 in directions allowed by the constraint.

* The constraint is satisfied to the requisite accuracy.

At the bottom of the Problem Setup and Results pane, the minimizer x appears under

Final point. For more information about exit messages, see “Exit Flags and Exit
Messages” on page 3-3.

Final paoint:

1 2
0.786| 0.518

Minimize Rosenbrock's Function at the Command Line
You can run the same optimization from the command line.

1 Create options that choose iterative display and the interior-point algorithm.
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options = optimoptions(@fmincon,...
'Display', 'iter', 'Algorithm', 'interior-point');

2  Runthe fmincon solver with the options structure, reporting both the location x of
the minimizer and the value fval attained by the objective function.

[x,fval] = fmincon(@rosenbrock, [0 O], ...
[1,01,01,01,[1,[1,@unitdisk,options)

The six sets of empty brackets represent optional constraints that are not being used
in this example. See the fmincon function reference pages for the syntax.

MATLAB outputs a table of iterations and the results of the optimization.
Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the selected value of the function tolerance,
and constraints are satisfied to within the selected value of the constraint tolerance.

X =
0.7864 0.6177

fval =
0.0457

The message tells you that the search for a constrained optimum ended because the
derivative of the objective function is nearly 0 in directions allowed by the constraint, and
that the constraint is satisfied to the requisite accuracy. Several phrases in the message
contain links to more information about the terms used in the message. For more details
about these links, see “Enhanced Exit Messages” on page 3-5.

Interpret the Result

The iteration table in the command window shows how MATLAB searched for the
minimum value of Rosenbrock's function in the unit disk. This table is the same whether
you use the Optimization app or the command line. MATLAB reports the minimization as
follows:

First-order Norm of

Iter F-count f(x) Feasibility optimality step
0 3 1.000000e+00 0.000e+00 2.000e+00

1 13 7.753537e-01 0.000e+00 6.250e+00 1.768e-01

2 18 6.519648e-01 0.000e+00 9.048e+00 1.679%e-01

3 21 5.543209e-01 0.000e+00 8.033e+00 1.203e-01

4 24 2.985207e-01 0.000e+00 1.790e+00 9.328e-02

5 27 2.653799%e-01 0.000e+00 2.788e+00 5.723e-02

6 30 1.897216e-01 0.000e+00 2.311e+00 1.147e-01
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7 33
8 36
9 39
10 42
11 45
12 48
13 51
14 54
15 57
16 60
17 63
18 66
19 69
20 72
21 75
22 78
23 81
24 84

ABRARADAADRDPRUOOOORREHRH

.513701e-01
.153330e-01
.198058e-01
.910052e-02
.771960e-02
.437664e-02
.329037e-02
.161934e-02
.964194e-02

955404e-02

.954839e-02
.658289e-02
.647011e-02
.569141e-02
.568281e-02
.568281e-02
.567641e-02
.567482e-02

[cNoNoNoNoNoNoNoNoNolooNolooNoNoN o)

.000e+00
.000e+00
.000e+00
.000e+00
.000e+00
.000e+00
.000e+00
.000e+00
.000e+00
.000e+00
.000e+00
.000e+00
.000e+00
.000e+00
.000e+00
.000e+00
.000e+00
.000e+00

R OOWORWUINWR R 10— ©

.706e-01
.127e+00
.000e-01

378e-01

.365e+00
.146e-01

883e-02

.016e-01
.913e-02

462e-03
993e-03
318e-02

.006e-04
.136e-03
.437e-05

000e-06

.601e-06
.996e-08

ONFWWARNAYNR,WULINO®OEOWOWL

.764e-02
.169e-02
.522e-02
.301e-02
.149e-02
.701e-03
.774e-03
.464e-02
.894e-03
.185e-04
.208e-05
.255e-02
.940e-04
.379%e-03
.974e-05
.083e-07
.793e-05
.916e-06

Your table can differ, depending on toolbox version and computing platform. The following
description applies to the table as displayed.

* The first column, labeled Iter, is the iteration number from 0 to 24. fmincon took 24

iterations to converge.

* The second column, labeled F-count, reports the cumulative number of times
Rosenbrock's function was evaluated. The final row shows an F-count of 84,

indicating that fmincon evaluated Rosenbrock's function 84 times in the process of
finding a minimum.

* The third column, labeled f (x), displays the value of the objective function. The final
value, 0.04567482, is the minimum reported in the Optimization app Run solver and

view results box, and at the end of the exit message in the command window.

* The fourth column, Feasibility, is O for all iterations. This column shows the value
of the constraint function unitdisk at each iteration where the constraint is positive.
Because the value of unitdisk was negative in all iterations, every iteration satisfied
the constraint.

The other columns of the iteration table are described in “Iterative Display” on page 3-

16.

See Also

fmincon
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. “Getting Started with Optimization Toolbox”
. “Solver-Based Optimization Problem Setup”
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Set Up a Linear Program, Solver-Based

In this section...

“Convert a Problem to Solver Form” on page 1-15
“Model Description” on page 1-15
“Solution Method” on page 1-17

“Bibliography” on page 1-23

Convert a Problem to Solver Form

This example shows how to convert a problem from mathematical form into Optimization
Toolbox solver syntax using the solver-based approach. While the problem is a linear
program, the techniques apply to all solvers.

The variables and expressions in the problem represent a model of operating a chemical
plant, from an example in Edgar and Himmelblau [1]. There are two videos that describe
the problem.

* Mathematical Modeling with Optimization, Part 1 shows the problem in pictorial form.
It shows how to generate the mathematical expressions of “Model Description” on
page 1-15 from the picture.

* Optimization Modeling, Part 2: Converting to Solver Form describes how to convert
these mathematical expressions into Optimization Toolbox solver syntax. This video
shows how to solve the problem, and how to interpret the results.

The remainder of this example is concerned solely with transforming the problem to
solver syntax. The example closely follows the video Optimization Modeling, Part 2:
Converting to Solver Form. The main difference between the video and the example is
that this example shows how to use named variables, or index variables, which are similar
to hash keys. This difference is in “Combine Variables Into One Vector” on page 1-18.

Model Description

The video Mathematical Modeling with Optimization, Part 1 suggests that one way to
convert a problem into mathematical form is to:

1 Get an overall idea of the problem
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Identify the goal (maximizing or minimizing something)
Identify (name) variables
Identify constraints
Determine which variables you can control

Specify all quantities in mathematical notation
Check the model for completeness and correctness

For the meaning of the variables in this section, see the video Mathematical Modeling
with Optimization, Part 1.

The optimization problem is to minimize the objective function, subject to all the other
expressions as constraints.

The objective function is:

0.002614

The constraints are:
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Solution Method

To solve the optimization problem, take the following steps.

“Choose a Solver” on page 1-17

“Combine Variables Into One Vector” on page 1-18
“Write Bound Constraints” on page 1-19

“Write Linear Inequality Constraints” on page 1-20
“Write Linear Equality Constraints” on page 1-21
“Write the Objective” on page 1-22

“Solve the Problem with linprog” on page 1-22

© N W=

“Examine the Solution” on page 1-23

The steps are also shown in the video Optimization Modeling, Part 2: Converting to Solver
Form.

Choose a Solver

To find the appropriate solver for this problem, consult the “Optimization Decision Table”
on page 2-6. The table asks you to categorize your problem by type of objective

function and types of constraints. For this problem, the objective function is linear, and
the constraints are linear. The decision table recommends using the Linprog solver.

As you see in “Problems Handled by Optimization Toolbox Functions” on page 2-17 or
the linprog function reference page, the Linprog solver solves problems of the form

A-x<b,
min f Ty such that Aeq - x = beq,
X

Ib< x<ub. (1-1)

* fTx means a row vector of constants f multiplying a column vector of variables x. In
other words,

fix = Ax(1) + f2)x(2) + + fin)x(n),

where n is the length of f.
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* A x < b represents linear inequalities. A is a k-by-n matrix, where k is the number of
inequalities and n is the number of variables (size of x). b is a vector of length k. For
more information, see “Linear Inequality Constraints” on page 2-46.

* Aeq x = beq represents linear equalities. Aeq is an m-by-n matrix, where m is the
number of equalities and n is the number of variables (size of x). beq is a vector of
length m. For more information, see “Linear Equality Constraints” on page 2-47.

* Ib = x < ub means each element in the vector x must be greater than the
corresponding element of Ib, and must be smaller than the corresponding element of
ub. For more information, see “Bound Constraints” on page 2-44.

The syntax of the linprog solver, as shown in its function reference page, is

[x fval]l = linprog(f,A,b,Aeq,beq,lb,ub);

The inputs to the linprog solver are the matrices and vectors in “Equation 1-1”.
Combine Variables Into One Vector

There are 16 variables in the equations of “Model Description” on page 1-15. Put these
variables into one vector. The name of the vector of variables is x in “Equation 1-1”.
Decide on an order, and construct the components of x out of the variables.

The following code constructs the vector using a cell array of names for the variables.

variables = {'I1','I2','HE1','HE2"','LE1','LE2"','C','BF1',...
'BF2','HPS','MPS','LPS','P1','P2','PP','EP'};

N = length(variables);

% create variables for indexing

for v = 1:N
eval([variables{v},' = ', num2str(v),';']);

end

Executing these commands creates the following named variables in your workspace:
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Workspace

variables Ix16 cell

These named variables represent index numbers for the components of x. You do not have
to create named variables. The video Optimization Modeling, Part 2: Converting to Solver
Form shows how to solve the problem simply using the index numbers of the components
of x.

Write Bound Constraints

There are four variables with lower bounds, and six with upper bounds in the equations of
“Model Description” on page 1-15. The lower bounds:

P1 > 2500
P2 > 3000
MPS > 271,536
LPS > 100,623.

Also, all the variables are positive, which means they have a lower bound of zero.
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Create the lower bound vector Lb as a vector of 0, then add the four other lower bounds.
1lb = zeros(size(variables));
1b([P1,P2,MPS,LPS]) = ...

[2500,3000,271536,1006231;

The variables with upper bounds are:

P1 < 6250
P2 < 9000
I1 < 192,000
I2 < 244,000
C = 62,000
LE2 < 142000.

Create the upper bound vector as a vector of Inf, then add the six upper bounds.
ub = Inf(size(variables));
ub([P1,P2,I1,1I2,C,LE2]) = ...
[6250,9000,192000,244000,62000,142000] ;
Write Linear Inequality Constraints

There are three linear inequalities in the equations of “Model Description” on page 1-15:

I1 - HE1 < 132,000
EP + PP = 12,000
P1 + P2 + PP = 24,550.

In order to have the equations in the form A x<b, put all the variables on the left side of
the inequality. All these equations already have that form. Ensure that each inequality is
in “less than” form by multiplying through by -1 wherever appropriate:

I1 - HE1 < 132,000
-EP - PP < -12,000
-P1 - P2 - PP < -24,550.

In your MATLAB workspace, create the A matrix as a 3-by-16 zero matrix, corresponding
to 3 linear inequalities in 16 variables. Create the b vector with three components.

A = zeros(3,16);
A(1,I1) 1; A(1,HE1)
A(2,EP) -1; A(2,PP)

-1; b(1)
-1; b(2)

132000;
-12000;
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A(3,[P1,P2,PP]) = [-1,-1,-1];
b(3) = -24550;

Write Linear Equality Constraints

There are eight linear equations in the equations of “Model Description” on page 1-15:

I2 = LE2 + HE2
LPS = LE1 + LE2 + BF2
HPS = I1 + I2 + BF1
HPS = C + MPS + LPS
I1 = LE1 + HE1l + C
MPS = HE1 + HE2 + BF1 - BF2
1359.8 I1 = 1267.8 HE1l + 1251.4 LE1 + 192 C + 3413 Pl
1359.8 I2 = 1267.8 HE2 + 1251.4 LE2 + 3413 P2.

In order to have the equations in the form Aeq x=beq, put all the variables on one side of
the equation. The equations become:

LE2 + HE2 - I2 = 0
LE1 + LE2 + BF2 - LPS = 0
I1 + I2 + BF1 - HPS = 0
C + MPS + LPS - HPS = 0
LE1 + HE1 + C - I1 = 0
HE1 + HE2 + BF1 - BF2 - MPS = 0
1267.8 HE1 + 1251.4 LE1 + 192 C + 3413 P1 - 1359.8 I1 = 0
1267.8 HE2 + 1251.4 LE2 + 3413 P2 - 1359.8 I2 = 0

Now write the Aeq matrix and beq vector corresponding to these equations. In your
MATLAB workspace, create the Aeq matrix as an 8-by-16 zero matrix, corresponding to 8
linear equations in 16 variables. Create the beq vector with eight components, all zero.

Aeq = zeros(8,16); beq = zeros(8,1);

Aeq(1l,[LE2,HE2,I2]) = [1,1,-1];

Aeq(2,[LE1l,LE2,BF2,LPS]) = [1,1,1,-1];
Aeq(3,[I1,I12,BF1,HPS]) = [1,1,1,-1];

Aeq(4,[C,MPS,LPS,HPS]) = [1,1,1,-11;

Aeq(5,[LE1,HEL1,C,I1]) = [1,1,1,-1];
Aeq(6,[HE1,HE2,BF1,BF2,MPS]) = [1,1,1,-1,-1];
Aeq(7,[HEL1,LE1,C,P1,I1]) = [1267.8,1251.4,192,3413,-1359.8];
Aeq(8, [HE2,LE2,P2,I2]) = [1267.8,1251.4,3413,-1359.8];
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Write the Objective
The objective function is
fTx = 0.002614 HPS + 0.0239 PP + 0.009825 EP.

Write this expression as a vector f of multipliers of the x vector:

f = zeros(size(variables));
f([HPS PP EP]) = [0.002614 0.0239 0.009825];

Solve the Problem with linprog

You now have inputs required by the linprog solver. Call the solver and print the outputs
in formatted form:

options = optimoptions('linprog', 'Algorithm', 'dual-simplex');
[x fval] = linprog(f,A,b,Aeq,beq,lb,ub,options);

for d = 1:N
fprintf('%12.2f \t%s\n',x(d),variables{d})
end

fval

The result:

Optimal solution found.
136328.74 I1
244000.00 I2
128159.00 HE1
143377.00 HE2

0.00 LE1
100623.00 LE2
8169.74 C

0.00 BF1
0.00 BF2
380328.74 HPS
271536.00 MPS
100623.00 LPS
6250.00 P1
7060.71 P2
11239.29 PP
760.71 EP
fval =
1.2703e+03
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Examine the Solution
The fval output gives the smallest value of the objective function at any feasible point.

The solution vector x is the point where the objective function has the smallest value.
Notice that:

* BF1, BF2, and LE1 are 0, their lower bounds.
 I2is 244,000, its upper bound.
* The nonzero components of the f vector are

* HPS —380,328.74
* PP—11,239.29
+ EP—-760.71

The video Optimization Modeling, Part 2: Converting to Solver Form gives interpretations
of these characteristics in terms of the original problem.
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In this section...

“Convert a Problem to Solver Form” on page 1-24
“Model Description” on page 1-25

“First Solution Method: Create Optimization Variable for Each Problem Variable” on
page 1-26

“Create Problem and Objective” on page 1-26

“Create and Include Linear Constraints” on page 1-26

“Solve Problem” on page 1-27

“Examine Solution” on page 1-28

“Second Solution Method: Create One Optimization Variable and Indices” on page 1-29
“Set Variable Bounds” on page 1-29

“Create Problem, Linear Constraints, and Solution” on page 1-30

“Examine Indexed Solution” on page 1-30

“Bibliography” on page 1-31

Convert a Problem to Solver Form

This example shows how to convert a linear problem from mathematical form into
Optimization Toolbox solver syntax using the problem-based approach.

The variables and expressions in the problem represent a model of operating a chemical
plant, from an example in Edgar and Himmelblau [1]. There are two videos that describe
the problem.

* Mathematical Modeling with Optimization, Part 1 shows the problem in pictorial form.
It shows how to generate the mathematical expressions of “Model Description” on
page 1-15 from the picture.

* Optimization Modeling, Part 2: Problem-Based Solution of a Mathematical Model
describes how to convert these mathematical expressions into Optimization Toolbox
solver syntax. This video shows how to solve the problem, and how to interpret the
results.



https://www.mathworks.com/videos/mathematical-modeling-with-optimization-part-1-101559.html
https://www.mathworks.com/videos/mathematical-modeling-with-optimization-part-2a-problem-based-linear-programming-1500391996125.html

Set Up a Linear Program, Problem-Based

The remainder of this example is concerned solely with transforming the problem to
solver syntax. The example closely follows the video Optimization Modeling, Part 2:
Problem-Based Solution of a Mathematical Model.

Model Description

The video Mathematical Modeling with Optimization, Part 1 suggests that one way to
convert a problem into mathematical form is to:

Get an overall idea of the problem

Identify the goal (maximizing or minimizing something)
Identify (name) variables

Identify constraints

Determine which variables you can control

Specify all quantities in mathematical notation

Check the model for completeness and correctness

Nounh~rWNER

For the meaning of the variables in this section, see the video Mathematical Modeling
with Optimization, Part 1.

The optimization problem is to minimize the objective function, subject to all the other
expressions as constraints.

The objective function is:
0.002614 HPS + 0.0239 PP + 0.009825 EP.

The constraints are:

2500 =< P1 < 6250
I1 =< 192,000
C =< 62,000
I1 - HE1 < 132,000
I1 = LE1 + HE1 + C
1359.8 I1 = 1267.8 HE1l + 1251.4 LE1 + 192 C + 3413 Pl
3000 =< P2 < 9000
I2 =< 244,000
LE2 < 142,000
I2 = LE2 + HE2
1359.8 I2 = 1267.8 HE2 + 1251.4 LE2 + 3413 P2
HPS = I1 + I2 + BF1
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HPS = C + MPS + LPS
LPS = LE1 + LE2 + BF2
MPS = HE1l + HE2 + BF1 - BF2
P1 + P2 + PP = 24,550
EP + PP = 12,000
MPS = 271,536
LPS = 100,623
All variables are positive.

First Solution Method: Create Optimization Variable for Each
Problem Variable

The first solution method involves creating an optimization variable for each problem
variable. As you create the variables, include their bounds.

Pl = optimvar('P1l', 'LowerBound',2500, 'UpperBound',6250);
P2 = optimvar('P2', 'LowerBound', 3000, 'UpperBound',9000);
I1 = optimvar('I1l', 'LowerBound',0, 'UpperBound',192000);
I2 = optimvar('I2', 'LowerBound',0, 'UpperBound',b244000);

C = optimvar('C', 'LowerBound',0, 'UpperBound',62000);

LE1l = optimvar('LE1l"', 'LowerBound',0);

LE2 = optimvar('LE2', 'LowerBound',@, 'UpperBound',b142000);
HE1 = optimvar('HE1l', 'LowerBound',0);

HE2 = optimvar('HE2', 'LowerBound',0);

HPS = optimvar('HPS', 'LowerBound',0);

MPS = optimvar('MPS', 'LowerBound',271536);
LPS = optimvar('LPS', 'LowerBound',100623);
BF1 = optimvar('BF1l', 'LowerBound',0);

BF2 = optimvar('BF2', 'LowerBound',0);

EP = optimvar('EP', 'LowerBound',0);

PP = optimvar('PP', 'LowerBound',0);

Create Problem and Objective

Create an optimization problem container. Include the objective function in the problem.

linprob = optimproblem('Objective',0.002614*HPS + 0.0239*PP + 0.009825*EP);

Create and Include Linear Constraints

There are three linear inequalities in the problem expressions:
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I1 - HE1 < 132,000
EP + PP > 12,000
P1 + P2 + PP > 24,550.
Create these inequality constraints and include them in the problem.
linprob.Constraints.consl = I1 - HE1l <= 132000;

linprob.Constraints.cons2 = EP + PP >= 12000;

linprob.Constraints.cons3 = P1 + P2 + PP >= 24550;

There are eight linear equalities:

I2 = LE2 + HE?2
LPS = LE1 + LE2 + BF2
HPS = I1 + I2 + BF1
HPS = C + MPS + LPS
I1 = LE1 + HE1 + C
MPS = HE1 + HE2 + BF1 - BF2
1359.8 I1 = 1267.8 HE1l + 1251.4 LE1 + 192 C + 3413 P1
1359.8 I2 = 1267.8 HE2 + 1251.4 LE2 + 3413 P2.
Include these constraints as well.

linprob.Constraints.econsl = LE2 + HE2 == I2;

linprob.Constraints.econs2 = LE1 + LE2 + BF2 == LPS;
linprob.Constraints.econs3 = I1 + I2 + BF1l == HPS;

linprob.Constraints.econs4 = C + MPS + LPS == HPS;

linprob.Constraints.econs5 = LE1 + HE1l + C == I1;

linprob.Constraints.econs6é = HE1l + HE2 + BF1l == BF2 + MPS;
linprob.Constraints.econs7 = 1267.8*HE1 + 1251.4*LE1l + 192*C + 3413*P1 == 1359.8*I1;
linprob.Constraints.econs8 = 1267.8*HE2 + 1251.4*LE2 + 3413*P2 == 1359.8*I2;

Solve Problem

The problem formulation is complete. Solve the problem using solve.

linsol = solve(linprob);

Optimal solution found.
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Examine Solution

Evaluate the objective function. (You could have asked for this value when you called
solve.)

evaluate(linprob.0Objective, linsol)

ans =
1.2703e+03
The lowest-cost method of operating the plant costs $1,207.30.

Examine the solution variable values.

tbl = struct2table(linsol)
tbl =
1x16 table
BF1 BF2 C EP HE1 HE2 HPS I1
0 0 8169.7 760.71 1.2816e+05 1.4338e+05 3.8033e+05 1.3633¢

This table is too wide to see easily. Stack the variables to get them to a vertical
orientation.

vars = {'P1','P2','I1",'12",'C","LEL", "LE2","HE1", "HE2"', ...

"HPS', 'MPS', 'LPS','BF1','BF2','EP','PP'};

outputvars = stack(tbl,vars, 'NewDataVariableName', 'Amt', 'IndexVariableName', 'Var")

outputvars =
16x2 table

Var Amt
P1 6250
P2 7060.7
I1 1.3633e+05
I2 2.44e+05
C 8169.7
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LE1 0
LE2 1.0062e+05
HE1 1.2816e+05
HE2 1.4338e+05
HPS 3.8033e+05
MPS 2.7154e+05
LPS 1.0062e+05
BF1 0
BF2 0
EP 760.71
PP 11239

* BF1, BF2, and LE1 are 0, their lower bounds.
o I2is244,000, its upper bound.
* The nonzero components of the objective function (cost) are

+ HPS —380,328.74
* PP—11,239.29
« EP—-760.71

The video Optimization Modeling, Part 2: Problem-Based Solution of a Mathematical
Model gives interpretations of these characteristics in terms of the original problem.

Second Solution Method: Create One Optimization Variable
and Indices

Alternatively, you can solve the problem using just one optimization variable that has
indices with the names of the problem variables. This method enables you to give a lower
bound of zero to all problem variables at once.

vars = {'P1','P2','I1','12"','C","'LEL", " 'LE2"','HELl"', '"HE2"', ...
'HPS', 'MPS', 'LPS', 'BF1','BF2','EP','PP'};
x = optimvar('x',vars, 'LowerBound',0);

Set Variable Bounds

Include the bounds on the variables using dot notation.

x('P1").LowerBound 2500;
x('P2").LowerBound 3000;
X('MPS'").LowerBound = 271536;
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X('LPS'").LowerBound = 100623;

x('P1").UpperBound = 6250;
x('P2").UpperBound = 9000;
x('I1").UpperBound = 192000;
x('I2").UpperBound = 244000;
x('C").UpperBound = 62000;
x('LE2") .UpperBound = 142000;

Create Problem, Linear Constraints, and Solution

The remainder of the problem setup is similar to the setup using separate variables. The
difference is that, instead of addressing a variable by its name, such as P1, you address it
using its index, x('P1').

Create the problem object, include the linear constraints, and solve the problem.
linprob = optimproblem('Objective',0.002614*x('HPS"') + 0.0239*x('PP') + 0.009825*x('EP
x('I1") - x('HE1') <= 132000;

X('EP") + x('PP') >= 12000;
X('PL'") + x('P2') + x('PP") >= 24550;

linprob.Constraints.consl
linprob.Constraints.cons2
linprob.Constraints.cons3

"LE2') + X('HE2') == x('I2");
"LE1') + x('LE2') + x('BF2") == x('LPS");

linprob.Constraints.econsl X (
x(
X('I1'") + x('I2') + x('BF1') == x('HPS");
X (
X (

linprob.Constraints.econs2
linprob.Constraints.econs3
linprob.Constraints.econs4
linprob.Constraints.econs5
linprob.Constraints.econs6
linprob.Constraints.econs?
linprob.Constraints.econs8

I

'C') + xX('MPS") + x('LPS") == x('HPS");

'"LE1') + x('HEL1') + x('C') == x('I1");

X('HE1") + x('HE2") + x('BF1') == x('BF2") + x('MPS");
1267.8*x('HE1") + 1251.4*x('LEL") + 192*x('C') + 3413*x('l
1267.8*x('HE2"') + 1251.4*x('LE2') + 3413*x('P2') == 1359.

[linsol, fval] = solve(linprob);

Optimal solution found.

Examine Indexed Solution

Examine the solution as a vertical table.

tbl table(vars',linsol.x")

tbl
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16x2 table

Varl Var?2

'pP1" 6250
'p2! 7060.7
'I1° 1.3633e+05
‘12 2.44e+05
c 8169.7
"LE1' 0
'LE2" 1.0062e+05
'HE1' 1.2816e+05
"HE2' 1.4338e+05
'"HPS' 3.8033e+05
'"MPS' 2.7154e+05
"LPS' 1.0062e+05
'BF1' 0
'BF2' 0
'EP' 760.71
'PP!' 11239
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Optimization Theory Overview

Optimization Theory Overview

Optimization techniques are used to find a set of design parameters, x = {x;,x,...,X,}, that
can in some way be defined as optimal. In a simple case this might be the minimization or
maximization of some system characteristic that is dependent on x. In a more advanced
formulation the objective function, f(x), to be minimized or maximized, might be subject to
constraints in the form of equality constraints, G;(x) = 0 (i = 1,...,m,); inequality
constraints, G;( x) = 0 (i = m, + 1,...,m); and/or parameter bounds, x;, X,.

A General Problem (GP) description is stated as

min f(x),

x (2-1)
subject to

Gi(x)=0 i=1,..,m,,
Gi(x)<0 i=m,+1,..,m,

where x is the vector of length n design parameters, f(x) is the objective function, which
returns a scalar value, and the vector function G(x) returns a vector of length m
containing the values of the equality and inequality constraints evaluated at x.

An efficient and accurate solution to this problem depends not only on the size of the
problem in terms of the number of constraints and design variables but also on
characteristics of the objective function and constraints. When both the objective function
and the constraints are linear functions of the design variable, the problem is known as a
Linear Programming (LP) problem. Quadratic Programming (QP) concerns the
minimization or maximization of a quadratic objective function that is linearly
constrained. For both the LP and QP problems, reliable solution procedures are readily
available. More difficult to solve is the Nonlinear Programming (NP) problem in which the
objective function and constraints can be nonlinear functions of the design variables. A
solution of the NP problem generally requires an iterative procedure to establish a
direction of search at each major iteration. This is usually achieved by the solution of an
LP, a QPB, or an unconstrained subproblem.

All optimization takes place in real numbers. However, unconstrained least squares

problems and equation-solving can be formulated and solved using complex analytic
functions. See “Complex Numbers in Optimization Toolbox Solvers” on page 2-20.
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There are four general categories of Optimization Toolbox solvers:
* Minimizers on page 2-17

This group of solvers attempts to find a local minimum of the objective function near a
starting point x0. They address problems of unconstrained optimization, linear
programming, quadratic programming, and general nonlinear programming.

* Multiobjective minimizers on page 2-18

This group of solvers attempts to either minimize the maximum value of a set of
functions (fminimax), or to find a location where a collection of functions is below
some prespecified values (fgoalattain).

* Equation solvers on page 2-18

This group of solvers attempts to find a solution to a scalar- or vector-valued nonlinear
equation f(x) = 0 near a starting point x0. Equation-solving can be considered a form
of optimization because it is equivalent to finding the minimum norm of f(x) near x0.

* Least-Squares (curve-fitting) solvers on page 2-19

This group of solvers attempts to minimize a sum of squares. This type of problem
frequently arises in fitting a model to data. The solvers address problems of finding
nonnegative solutions, bounded or linearly constrained solutions, and fitting
parametrized nonlinear models to data.

For more information see “Problems Handled by Optimization Toolbox Functions” on page
2-17. See “Optimization Decision Table” on page 2-6 for aid in choosing among solvers
for minimization.

Minimizers formulate optimization problems in the form

min f(x),

possibly subject to constraints. f(x) is called an objective function. In general, f(x) is a
scalar function of type double, and x is a vector or scalar of type double. However,
multiobjective optimization, equation solving, and some sum-of-squares minimizers, can
have vector or matrix objective functions F(x) of type double. To use Optimization
Toolbox solvers for maximization instead of minimization, see “Maximizing an Objective”
on page 2-39.



Optimization Toolbox Solvers

Write the objective function for a solver in the form of a function file or anonymous

function handle. You can supply a gradient Vf(x) for many solvers, and you can supply a
Hessian for several solvers. See “Write Objective Function”. Constraints have a special
form, as described in “Write Constraints”.
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Optimization Decision Table
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The following table is designed to help you choose a solver. It does not address
multiobjective optimization or equation solving. There are more details on all the solvers
in “Problems Handled by Optimization Toolbox Functions” on page 2-17.

In this table:

* means relevant solvers are found in Global Optimization Toolbox (Global
Optimization Toolbox) functions (licensed separately from Optimization Toolbox
solvers).

fmincon applies to most smooth objective functions with smooth constraints. It is not
listed as a preferred solver for least squares or linear or quadratic programming
because the listed solvers are usually more efficient.

The table has suggested functions, but it is not meant to unduly restrict your choices.
For example, fmincon can be effective on some nonsmooth problems.

The Global Optimization Toolbox ga function can address mixed-integer programming
problems.

The Statistics and Machine Learning Toolbox™ bayesopt function can address low-
dimensional deterministic or stochastic optimization problems with combinations of
continuous, integer, or categorical variables.



Optimization Decision Table

Solvers by Objective and Constraint

Constraint Objective Type
Type Linear Quadratic Least Squares |Smooth Nonsmooth
Nonlinear
None n/a (f = const, |[quadprog, mldivide, fminsearch, |fminsearch,*
or min = —e) |Information lsqcurvefit, |fminunc,
lsgnonlin, Information
Information
Bound linprog, quadprog, lsqcurvefit, |fminbnd, fminbnd, *
Information Information lsqlin, fmincon,
lsqgnonlin, fseminf,
lsgnonneg, Information
Information
Linear linprog, quadprog, lsqlin, fmincon, v
Information Information Information fseminf,
Information
General Smooth|fmincon, fmincon, fmincon, fmincon, &
Information Information Information fseminf,
Information
Discrete, with |[intlinprog, |* & B &
Bound or Information
Linear

Note This table does not list multiobjective solvers nor equation solvers. See “Problems
Handled by Optimization Toolbox Functions” on page 2-17 for a complete list of
problems addressed by Optimization Toolbox functions.

Note Some solvers have several algorithms. For help choosing, see “Choosing the

Algorithm” on page 2-8.
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In this section...

“fmincon Algorithms” on page 2-8

“fsolve Algorithms” on page 2-10

“fminunc Algorithms” on page 2-10

“Least Squares Algorithms” on page 2-11

“Linear Programming Algorithms” on page 2-12

“Quadratic Programming Algorithms” on page 2-13

“Large-Scale vs. Medium-Scale Algorithms” on page 2-14
“Potential Inaccuracy with Interior-Point Algorithms” on page 2-15

fmincon Algorithms

fmincon has five algorithm options:

 'interior-point' (default)

* 'trust-region-reflective'
* 'sgp’

* 'sgp-legacy'

* 'active-set'

Use optimoptions to set the Algorithm option at the command line.



Choosing the Algorithm

Recommendations

See “Potential Inaccuracy with Interior-Point Algorithms” on page 2-15.

Use the 'interior-point' algorithm first.

For help if the minimization fails, see “When the Solver Fails” on page 4-3 or
“When the Solver Might Have Succeeded” on page 4-15.

To run an optimization again to obtain more speed on small- to medium-sized
problems, try 'sqp' next, and 'active-set' last.

Use 'trust-region-reflective' when applicable. Your problem must have:
objective function includes gradient, only bounds, or only linear equality constraints
(but not both).

Reasoning Behind the Recommendations

"interior-point' handles large, sparse problems, as well as small dense problems.
The algorithm satisfies bounds at all iterations, and can recover from NaN or Inf
results. It is a large-scale algorithm; see “Large-Scale vs. Medium-Scale Algorithms”
on page 2-14. The algorithm can use special techniques for large-scale problems. For
details, see Interior-Point Algorithm in fmincon options.

'sqp' satisfies bounds at all iterations. The algorithm can recover from NaN or Inf
results. It is not a large-scale algorithm; see “Large-Scale vs. Medium-Scale
Algorithms” on page 2-14.

'sqp-legacy' is similar to 'sqp’, but usually is slower and uses more memory.

'active-set' can take large steps, which adds speed. The algorithm is effective on
some problems with nonsmooth constraints. It is not a large-scale algorithm; see
“Large-Scale vs. Medium-Scale Algorithms” on page 2-14.

"trust-region-reflective' requires you to provide a gradient, and allows only
bounds or linear equality constraints, but not both. Within these limitations, the
algorithm handles both large sparse problems and small dense problems efficiently. It
is a large-scale algorithm; see “Large-Scale vs. Medium-Scale Algorithms” on page 2-
14. The algorithm can use special techniques to save memory usage, such as a
Hessian multiply function. For details, see Trust-Region-Reflective Algorithm in
fmincon options.

For descriptions of the algorithms, see “Constrained Nonlinear Optimization Algorithms”
on page 6-21.
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fsolve Algorithms

fsolve has three algorithms:

* 'trust-region-dogleg' (default)
* 'trust-region'
* 'levenberg-marquardt'

Use optimoptions to set the Algorithm option at the command line.

Recommendations

* Usethe 'trust-region-dogleg' algorithm first.

For help if fsolve fails, see “When the Solver Fails” on page 4-3 or “When the
Solver Might Have Succeeded” on page 4-15.

* To solve equations again if you have a Jacobian multiply function, or want to tune the
internal algorithm (see Trust-Region Algorithm in fsolve options), try 'trust-
region'.

* Try timing all the algorithms, including ' levenberg-marquardt', to find the
algorithm that works best on your problem.

Reasoning Behind the Recommendations

* 'trust-region-dogleg' is the only algorithm that is specially designed to solve
nonlinear equations. The others attempt to minimize the sum of squares of the
function.

* The 'trust-region' algorithm is effective on sparse problems. It can use special
techniques such as a Jacobian multiply function for large-scale problems.

For descriptions of the algorithms, see “Equation Solving Algorithms” on page 12-2.

fminunc Algorithms

fminunc has two algorithms:

* 'quasi-newton' (default)
* ‘'trust-region'

Use optimoptions to set the Algorithm option at the command line.
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Recommendations

» If your objective function includes a gradient, use 'Algorithm' = 'trust-
region', and set the SpecifyObjectiveGradient option to true.
* Otherwise, use 'Algorithm' = 'quasi-newton'.

For help if the minimization fails, see “When the Solver Fails” on page 4-3 or “When
the Solver Might Have Succeeded” on page 4-15.

For descriptions of the algorithms, see “Unconstrained Nonlinear Optimization
Algorithms” on page 6-2.

Least Squares Algorithms
Isqglin
1sqlin has two algorithms:

* 'interior-point’, the default
* 'trust-region-reflective'

Use optimoptions to set the Algorithm option at the command line.

Recommendations

* Try 'interior-point' first.

Tip For better performance when your input matrix C has a large fraction of nonzero
entries, specify C as an ordinary double matrix. Similarly, for better performance
when C has relatively few nonzero entries, specify C as sparse. For data type details,
see “Sparse Matrices” (MATLAB). You can also set the internal linear algebra type by
using the 'LinearSolver' option.

* Ifyou have no constraints or only bound constraints, and want higher accuracy, more
speed, or want to use a “Jacobian Multiply Function with Linear Least Squares” on
page 11-38, try 'trust-region-reflective'.

For help if the minimization fails, see “When the Solver Fails” on page 4-3 or “When
the Solver Might Have Succeeded” on page 4-15.

See “Potential Inaccuracy with Interior-Point Algorithms” on page 2-15.
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For descriptions of the algorithms, see “Least-Squares (Model Fitting) Algorithms” on
page 11-2.

Isqcurvefit and Isqnonlin
lsqcurvefit and lsqnonlin have two algorithms:

* 'trust-region-reflective' (default)
* 'levenberg-marquardt'

Use optimoptions to set the Algorithm option at the command line.

Recommendations

* Generally, try 'trust-region-reflective' first. If your problem has bounds, you
must use 'trust-region-reflective'.

* Ifyour problem has no bounds and is underdetermined (fewer equations than
dimensions), use ' levenberg-marquardt'.

For help if the minimization fails, see “When the Solver Fails” on page 4-3 or “When
the Solver Might Have Succeeded” on page 4-15.

For descriptions of the algorithms, see “Least-Squares (Model Fitting) Algorithms” on
page 11-2.
Linear Programming Algorithms

linprog has three algorithms:

* ‘'dual-simplex', the default
 ‘'interior-point-legacy'
* 'interior-point'

Use optimoptions to set the Algorithm option at the command line.
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Recommendations
Use the 'dual-simplex' algorithm or the 'interior-point' algorithm first.

For help if the minimization fails, see “When the Solver Fails” on page 4-3 or “When
the Solver Might Have Succeeded” on page 4-15.

See “Potential Inaccuracy with Interior-Point Algorithms” on page 2-15.

Reasoning Behind the Recommendations

* Often, the 'dual-simplex' and 'interior-point' algorithms are fast, and use
the least memory.

* The 'interior-point-legacy' algorithm is similar to 'interior-point', but
"interior-point-legacy' can be slower, less robust, or use more memory.

For descriptions of the algorithms, see “Linear Programming Algorithms” on page 8-2.

Quadratic Programming Algorithms

quadprog has two algorithms:

* 'interior-point-convex' (default)
* 'trust-region-reflective'

Use optimoptions to set the Algorithm option at the command line.
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2-14

Recommendations

* Ifyou have a convex problem, or if you don't know whether your problem is convex,
use 'interior-point-convex'.

* Tip For better performance when your Hessian matrix H has a large fraction of
nonzero entries, specify H as an ordinary double matrix. Similarly, for better
performance when H has relatively few nonzero entries, specify H as sparse. For data
type details, see “Sparse Matrices” (MATLAB). You can also set the internal linear
algebra type by using the 'LinearSolver' option.

* Ifyou have a nonconvex problem with only bounds, or with only linear equalities, use
'trust-region-reflective'.

For help if the minimization fails, see “When the Solver Fails” on page 4-3 or “When
the Solver Might Have Succeeded” on page 4-15.

See “Potential Inaccuracy with Interior-Point Algorithms” on page 2-15.

For descriptions of the algorithms, see “Quadratic Programming Algorithms” on page 10-
2.

Large-Scale vs. Medium-Scale Algorithms

An optimization algorithm is large scale when it uses linear algebra that does not need to
store, nor operate on, full matrices. This may be done internally by storing sparse
matrices, and by using sparse linear algebra for computations whenever possible.
Furthermore, the internal algorithms either preserve sparsity, such as a sparse Cholesky
decomposition, or do not generate matrices, such as a conjugate gradient method.

In contrast, medium-scale methods internally create full matrices and use dense linear
algebra. If a problem is sufficiently large, full matrices take up a significant amount of
memory, and the dense linear algebra may require a long time to execute.

Don't let the name “large scale” mislead you; you can use a large-scale algorithm on a
small problem. Furthermore, you do not need to specify any sparse matrices to use a
large-scale algorithm. Choose a medium-scale algorithm to access extra functionality,
such as additional constraint types, or possibly for better performance.
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Potential Inaccuracy with Interior-Point Algorithms

Interior-point algorithms in fmincon, quadprog, 1sqlin, and linprog have many good
characteristics, such as low memory usage and the ability to solve large problems quickly.
However, their solutions can be slightly less accurate than those from other algorithms.
The reason for this potential inaccuracy is that the (internally calculated) barrier function
keeps iterates away from inequality constraint boundaries.

For most practical purposes, this inaccuracy is usually quite small.

To reduce the inaccuracy, try to:

* Rerun the solver with smaller StepTolerance, OptimalityTolerance, and
possibly ConstraintTolerance tolerances (but keep the tolerances sensible.) See
“Tolerances and Stopping Criteria” on page 2-78).

* Run a different algorithm, starting from the interior-point solution. This can fail,
because some algorithms can use excessive memory or time, and all Linprog and
some quadprog algorithms do not accept an initial point.

For example, try to minimize the function x when bounded below by 0. Using the
fmincon default interior-point algorithm:

options = optimoptions(@fmincon, 'Algorithm', 'interior-point"', 'Display', 'off');
x = fmincon(@(x)x,1,[1,[1,[1,[1,0,[1,[],options)

X =
2.0000e-08
Using the fmincon sqp algorithm:

options.Algorithm = 'sqp';
x2 = fmincon(@(x)x,1,[1,[1,[1,[1,0,[1,[1,0options)

X2 =
0

Similarly, solve the same problem using the linprog interior-point-legacy
algorithm:

opts = optimoptions(@linprog, 'Display', 'off', "Algorithm', "interior-point-legacy');
x = linprog(1,[],[],[1,[1,0,[],1,0pts)

2-15



2 Setting Up an Optimization

2.0833e-13
Using the linprog dual-simplex algorithm:

opts.Algorithm = 'dual-simplex';
X2 = linprog(1,[],[1,[1,[1,0,[],1,0pts)

X2 =
0

In these cases, the interior-point algorithms are less accurate, but the answers are quite
close to the correct answer.
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Problems Handled by Optimization Toolbox Functions

The following tables show the functions available for minimization, equation solving,
multiobjective optimization, and solving least-squares or data-fitting problems.

Minimization Problems

Type Formulation Solver
Scalar minimization min f(x) fminbnd
X
such that Ib < x < ub (x is scalar)
Unconstrained minimization min f(x) fminunc,
x fminsearch
Linear programming o linprog
X
such that A-x = b, Aeq'x = beq, b < x < ub
Mixed-integer linear min fo intlinprog
programming x
such that A-x = b, Aeq-x = beq, Ib < x < ub,
x(intcon) is integer-valued.
Quadratic programmin uadpro
P J minleHx+ cTx a prog
X
such that A-x = b, Aeq'x = beq, Ib = x < ub
Constrained minimization min f(x) fmincon
X
such that c(x) = 0, ceq(x) = 0, A-x < b,
Aeq'x =beq,Ib<x<ub
Semi-infinite minimization min f(x) fseminf
X
such that K(x,w) < 0 for all w, c(x) < 0,
ceq(x) =0,A-x<b,Aeqx =beq,lb<x<ub
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Multiobjective Problems

Type Formulation Solver
Goal attainment min y fgoalattain
x,Y
such that F(x) - wy =< goal, c(x) = 0, ceq(x) =0,
A-x = b,Aeqx=beq,lb<x<ub
Minimax minmax F, (x) fminimax
x i
such that c(x) = 0, ceq(x) = 0, Ax < b,
Aeq'x =beq,lb =x<ub
Equation Solving Problems
Type Formulation Solver
Linear equations C'x = d, n equations, n variables mldivide
(matrix left
division)
Nonlinear equation of one fx)=0 fzero
variable
Nonlinear equations F(x) = 0, n equations, n variables fsolve
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Least-Squares (Model-Fitting) Problems

Type Formulation Solver
Linear least-squares 1 9 mldivide
min 5||C x=dl (matrix left
division)
m equations, n variables
Nonnegative linear-least- 1 9 Lsgnonneg
squares min §||C x—dl
X
such that x = 0
Constrained linear-least- 1 9 lsqlin
squares min §||C x—dl
X
such that A-x = b, Aeq'x = beq,lb < x < ub
Nonlinear least-squares . . lsgnonlin
q min ||F(x)||§ =min 2 F2(x) a
such thatlb < x <= ub
Nonlinear curve fitting lsqcurvefit

min |F(x,xdata) - ydata";
X

such thatlb = x < ub
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Complex Numbers in Optimization Toolbox Solvers

Generally, Optimization Toolbox solvers do not accept or handle objective functions or
constraints with complex values. However, the least-squares solvers lsqcurvefit,
lsgnonlin, and 1sqlin, and the fsolve solver can handle these objective functions
under the following restrictions:

* The objective function must be analytic in the complex function sense (for details, see
Nevanlinna and Paatero [1]). For example, the function f(z) = Re(2) - ilm(z2) is not
analytic, but the function f(z) = exp(2) is analytic. This restriction automatically holds
for Lsqlin.

* There must be no constraints, not even bounds. Complex numbers are not well
ordered, so it is not clear what “bounds” might mean. When there are problem
bounds, nonlinear least-squares solvers disallow steps leading to complex values.

* Do not set the FunValCheck option to 'on'. This option immediately halts a solver
when the solver encounters a complex value.

The least-squares solvers and fsolve try to minimize the squared norm of a vector of
function values. This makes sense even in the presence of complex values.

If you have a non-analytic function or constraints, split the real and imaginary parts of the
problem. For an example, see “Fit a Model to Complex-Valued Data” on page 11-63.

To get the best (smallest norm) solution, try setting a complex initial point. For example,
solving 1 + x* = 0 fails if you use a real start point:

f = @(x)1+x"4;

x0 = 1;

x = fsolve(f,x0)

No solution found.

fsolve stopped because the problem appears regular as measured by the gradient,
but the vector of function values is not near zero as measured by the

default value of the function tolerance.

X =

1.1176e-08

However, if you use a complex initial point, fsolve succeeds:
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x0 =1+ 1i/10;
x = fsolve(f,x0)

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the default value of the function tolerance, and
the problem appears regular as measured by the gradient.

X =

0.7071 + 0.70711i

References

[1] Nevanlinna, Rolf, and V. Paatero. Introduction to Complex Analysis. Addison-Wesley,
1969.

See Also

Related Examples
. “Fit a Model to Complex-Valued Data” on page 11-63
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Types of Objective Functions

Many Optimization Toolbox solvers minimize a scalar function of a multidimensional
vector. The objective function is the function the solvers attempt to minimize. Several
solvers accept vector-valued objective functions, and some solvers use objective functions

you specify by vectors or matrices.

Objective Type Solvers How to Write Objectives
Scalar fmincon “Writing Scalar Objective Functions” on
page 2-23
fminunc
fminbnd
fminsearch
fseminf
fzero
Nonlinear least squares lsqcurvefit “Writing Vector and Matrix Objective
Functions” on page 2-34
lsgnonlin
Multivariable equation fsolve
solving
Multiobjective fgoalattain
fminimax
Linear programming linprog “Writing Objective Functions for Linear or
Mixed-integer linear intlinprog Quadratic Problems” on page 2-38
programming
Linear least squares lsqlin
lsgnonneg
Quadratic programming |quadprog
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Writing Scalar Objective Functions

In this section...

“Function Files” on page 2-23
“Anonymous Function Objectives” on page 2-25

“Including Gradients and Hessians” on page 2-25

Function Files

A scalar objective function file accepts one input, say X, and returns one real scalar
output, say f. The input X can be a scalar, vector, or matrix on page 2-40. A function file
can return more outputs (see “Including Gradients and Hessians” on page 2-25).

For example, suppose your objective is a function of three variables, x, y, and z:
fixX) = 3*(x - y)* + 4*(x + 22/ (1 + x* + y* + 2?) + cosh(x - 1) + tanh(y + 2).

1 Write this function as a file that accepts the vector xin = [x;y;z] and returns f:

function f = myObjective(xin)
f = 3*(xin(1l)-xin(2))"4 + 4*(xin(1)+xin(3))"2/(1+norm(xin)~2)
+ cosh(xin(1)-1) + tanh(xin(2)+xin(3));
2 Save it as a file named myObjective.m to a folder on your MATLAB path.
3 Check that the function evaluates correctly:

myObjective([1;2;3])

9.2666

For information on how to include extra parameters, see “Passing Extra Parameters” on
page 2-64. For more complex examples of function files, see “Minimization with Gradient
and Hessian Sparsity Pattern” on page 6-17 or “Minimization with Bound Constraints
and Banded Preconditioner” on page 6-103.

Local Functions and Nested Functions

Functions can exist inside other files as local functions (MATLAB) or nested functions
(MATLAB). Using local functions or nested functions can lower the number of distinct files
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you save. Using nested functions also lets you access extra parameters, as shown in
“Nested Functions” on page 2-66.

For example, suppose you want to minimize the myObjective.m objective function,
described in “Function Files” on page 2-23, subject to the ellipseparabola.m
constraint, described in “Nonlinear Constraints” on page 2-48. Instead of writing two
files, myObjective.mand ellipseparabola.m, write one file that contains both
functions as local functions:

function [x fval] = callObjConstr(x0,options)
% Using a local function for just one file

if nargin < 2
options = optimoptions('fmincon', 'Algorithm', 'interior-point');
end

[x fval] = fmincon(@myObjective,x0,[],[],[1,[]1,[]1,[],
@ellipseparabola,options);

function f = myObjective(xin)
f = 3%(xin(1)-xin(2))"4 + 4*(xin(1)+xin(3))"2/(1+sum(xin.”2))
+ cosh(xin(1l)-1) + tanh(xin(2)+xin(3));

function [c,ceq] = ellipseparabola(x)
c(l) = (x(1)72)/9 + (x(2)72)/4 - 1;
c(2) = x(1)"2 - x(2) - 1;

ceq = [1;

Solve the constrained minimization starting from the point [1;1;1]:
[x fval] = callObjConstr(ones(3,1))
Local minimum found that satisfies the constraints.

Optimization completed because the objective function is
non-decreasing in feasible directions, to within the default
value of the function tolerance, and constraints are satisfied
to within the default value of the constraint tolerance.

X =
1.1835
0.8345
-1.6439
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fval =
0.5383

Anonymous Function Objectives

Use anonymous functions to write simple objective functions. For more information about
anonymous functions, see “What Are Anonymous Functions?” (MATLAB). Rosenbrock's
function is simple enough to write as an anonymous function:

anonrosen = @(x) (100*(x(2) - x(1)72)"2 + (1-x(1))"2);
Check that anonrosen evaluates correctly at [-1 2]:
anonrosen([-1 2])

ans =
104

Minimizing anonrosen with fminunc yields the following results:

options = optimoptions(@fminunc, 'Algorithm', 'quasi-newton');
[x fval] = fminunc(anonrosen,[-1;2],options)

Local minimum found.

Optimization completed because the size of the gradient
is less than the default value of the function tolerance.

X =
1.0000
1.0000

fval =
1.2266e-10

Including Gradients and Hessians

* “Provide Derivatives For Solvers” on page 2-26
* “How to Include Gradients” on page 2-26

* “Including Hessians” on page 2-28

* “Benefits of Including Derivatives” on page 2-32
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* “Choose Input Hessian Approximation for interior-point fmincon” on page 2-32
Provide Derivatives For Solvers

For fmincon and fminunc, you can include gradients in the objective function. Generally,
solvers are more robust, and can be slightly faster when you include gradients. See
“Benefits of Including Derivatives” on page 2-32. To also include second derivatives
(Hessians), see “Including Hessians” on page 2-28.

The following table shows which algorithms can use gradients and Hessians.

Solver Algorithm Gradient Hessian
fmincon active-set Optional No
interior-point Optional Optional (see “Hessian for fmincon
interior-point algorithm” on page 2-
29)
sgp Optional No
trust-region-reflective|Required Optional (see “Hessian for fminunc

trust-region or fmincon trust-region-
reflective algorithms” on page 2-28)

fminunc quasi-newton Optional No

trust-region Required Optional (see “Hessian for fminunc
trust-region or fmincon trust-region-
reflective algorithms” on page 2-28)

How to Include Gradients
1 Write code that returns:

* The objective function (scalar) as the first output
* The gradient (vector) as the second output

2 Setthe SpecifyObjectiveGradient option to true using optimoptions. If
appropriate, also set the SpecifyConstraintGradient option to true.

3 Optionally, check if your gradient function matches a finite-difference approximation.
See “Checking Validity of Gradients or Jacobians” on page 2-81.

Tip For most flexibility, write conditionalized code. Conditionalized means that the
number of function outputs can vary, as shown in the following example. Conditionalized
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code does not error depending on the value of the SpecifyObjectiveGradient option.
Unconditionalized code requires you to set options appropriately.

For example, consider Rosenbrock's function
2
f()=100(xy a7 | +(1-x)?,

which is described and plotted in “Solve a Constrained Nonlinear Problem” on page 1-5.
The gradient of f(x) is

~400( g - o Jo; ~2(1- ;)
Vi(x) = )
200(x; - 7 )

rosentwo is a conditionalized function that returns whatever the solver requires:

function [f,g] = rosentwo(x)
% Calculate objective f
f = 100%(x(2) - x(1)72)72 + (1-x(1))"2;

radient requ1red
) -x(1)72)*x (1) -2*(1-x(1));
x(1)72)1;

if nargout >1%g
[-400*(x (2
200%*(x(2) -
end

nargout checks the number of arguments that a calling function specifies. See “Find
Number of Function Arguments” (MATLAB).

The fminunc solver, designed for unconstrained optimization, allows you to minimize
Rosenbrock's function. Tell fminunc to use the gradient and Hessian by setting options:

options = optimoptions(@fminunc, 'Algorithm', 'trust-region’,
'SpecifyObjectiveGradient', true);

Run fminunc starting at [-1;2]:

[x fval] = fminunc(@rosentwo,[-1;2],options)
Local minimum found.
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Optimization completed because the size of the gradient
is less than the default value of the function tolerance.

X =
1.0000
1.0000

fval =
1.9886e-17

If you have a Symbolic Math Toolbox™ license, you can calculate gradients and Hessians
automatically, as described in “Symbolic Math Toolbox Calculates Gradients and
Hessians” on page 6-116.

Including Hessians

You can include second derivatives with the fmincon 'trust-region-reflective'
and 'interior-point' algorithms, and with the fminunc 'trust-region' algorithm.
There are several ways to include Hessian information, depending on the type of
information and on the algorithm.

You must also include gradients (set SpecifyObjectiveGradient to true and, if
applicable, SpecifyConstraintGradient to true) in order to include Hessians.

* “Hessian for fminunc trust-region or fmincon trust-region-reflective algorithms”
on page 2-28

* “Hessian for fmincon interior-point algorithm” on page 2-29

* “Hessian Multiply Function” on page 2-31

Hessian for fminunc trust-region or fmincon trust-region-reflective algorithms

These algorithms either have no constraints, or have only bound or linear equality
constraints. Therefore the Hessian is the matrix of second derivatives of the objective
function.

Include the Hessian matrix as the third output of the objective function. For example, the
Hessian H(x) of Rosenbrock’s function is (see “How to Include Gradients” on page 2-26)

_| 12002} —400xy +2  -400x;
~400x, 200 |

H(x)

Include this Hessian in the objective:
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function [f, g, H] = rosenboth(x)
% Calculate objective f
f = 100%(x(2) - x(1)72)"2 + (1-x(1))"2;
if nargout > 1 % gradient required
g = [-400*(x(2)-x(1)"2)*x(1)-2*(1-x(1));
200%(x(2)-x(1)"2)1;
if nargout > 2 % Hessian required
H = [1200*x(1)"2-400*x(2)+2, -400*x(1);
-400*x (1), 2001;
end
end
Set HessianFcn to 'objective’. For example,

options = optimoptions('fminunc', 'Algorithm', 'trust-region',...
'SpecifyObjectiveGradient', true, 'HessianFcn', 'objective');

Hessian for fmincon interior-point algorithm

The Hessian is the Hessian of the Lagrangian, where the Lagrangian L(x,4) is
L, 1) = f() + Y Agigi (@) + X, Ap iy ().

g and h are vector functions representing all inequality and equality constraints
respectively (meaning bound, linear, and nonlinear constraints), so the minimization
problem is

min f(x) subject to g(x) <0, A(x) =0.
X

For details, see “Constrained Optimality Theory” on page 3-12. The Hessian of the
Lagrangian is

V2 L, A) = V2F0) + 3 Ag V2 () + > Ay V2R (x).

To include a Hessian, write a function with the syntax

hessian = hessianfcn(x, lambda)
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2-30

hessian is an n-by-n matrix, sparse or dense, where n is the number of variables. If
hessian is large and has relatively few nonzero entries, save running time and memory
by representing hessian as a sparse matrix. lambda is a structure with the Lagrange
multiplier vectors associated with the nonlinear constraints:

lambda.inegnonlin
lambda.eqgnonlin

fmincon computes the structure lambda and passes it to your Hessian function.
hessianfcn must calculate the sums in “Equation 2-2”. Indicate that you are supplying a
Hessian by setting these options:

options = optimoptions('fmincon', 'Algorithm', 'interior-point',...
'SpecifyObjectiveGradient', true, 'SpecifyConstraintGradient', true, ...
'HessianFcn',@hessianfcn);

For example, to include a Hessian for Rosenbrock’s function constrained to the unit disk

x? +x2 <1, notice that the constraint function g(x)=xZ + x5 —1<0 has gradient and

second derivative matrix
2x
Vg(x) =
2.7C2
20
H g(x) = {0 2]

Write the Hessian function as

function Hout = hessianfcn(x, lambda)

% Hessian of objective

H = [1200*%x(1)"2-400*x(2)+2, -400*x(1);
-400*x (1), 200];

% Hessian of nonlinear inequality constraint

Hg = 2*eye(2);

Hout = H + lambda.inegnonlin*Hg;

Save hessianfcn on your MATLAB path. To complete the example, the constraint
function including gradients is

function [c,ceq,gc,gceq] = unitdisk2(x)
c = x(1)"2 + x(2)"2 - 1;
ceq=11;
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if nargout > 2
gc = [2*x(1);2*x(2)];
gceq = [];

end

Solve the problem including gradients and Hessian.

fun = @rosenboth;

nonlcon = @Qunitdisk2;

x0 = [-1;2];

options = optimoptions('fmincon','Algorithm', 'interior-point"',...
'SpecifyObjectiveGradient', true, 'SpecifyConstraintGradient', true, ...
'HessianFcn',@hessianfcn);

[x,fval,exitflag,output] = fmincon(fun,x0,[1,[1,[1,[1,[1,[],@unitdisk2,options);

For other examples using an interior-point Hessian, see “fmincon Interior-Point Algorithm
with Analytic Hessian” on page 6-85 and “Symbolic Math Toolbox Calculates Gradients
and Hessians” on page 6-116.

Hessian Multiply Function

Instead of a complete Hessian function, both the fmincon interior-point and trust-
region-reflective algorithms allow you to supply a Hessian multiply function. This
function gives the result of a Hessian-times-vector product, without computing the
Hessian directly. This can save memory. The SubproblemAlgorithm option must be
'cg' for a Hessian multiply function to work; this is the trust-region-reflective
default.

The syntaxes for the two algorithms differ.
* Forthe interior-point algorithm, the syntax is
W = HessMultFcn(x, lambda,v);

The result W should be the product H*v, where H is the Hessian of the Lagrangian at x
(see “Equation 15-1”), Llambda is the Lagrange multiplier (computed by fmincon), and
v is a vector of size n-by-1. Set options as follows:

options = optimoptions('fmincon', 'Algorithm', 'interior-point', 'SpecifyObjectiveGrad:
'SpecifyConstraintGradient',true, 'SubproblemAlgorithm', 'cg', 'HessianMultiplyFcn'

Supply the function HessMultFcn, which returns an n-by-1 vector, where n is the
number of dimensions of x. The HessianMultiplyFcn option enables you to pass the
result of multiplying the Hessian by a vector without calculating the Hessian.
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* The trust-region-reflective algorithm does not involve lambda:
W = HessMultFcn(H,v);

The result W = H*v. fmincon passes H as the value returned in the third output of the
objective function (see “Hessian for fminunc trust-region or fmincon trust-region-
reflective algorithms” on page 2-28). fmincon also passes v, a vector or matrix with n
rows. The number of columns in v can vary, so write HessMultFcn to accept an
arbitrary number of columns. H does not have to be the Hessian; rather, it can be
anything that enables you to calculate W = H*v.

Set options as follows:

options = optimoptions('fmincon', 'Algorithm', 'trust-region-reflective',...
'SpecifyObjectiveGradient', true, 'HessianMultiplyFcn',@HessMultFcn);

For an example using a Hessian multiply function with the trust-region-
reflective algorithm, see “Minimization with Dense Structured Hessian, Linear
Equalities” on page 6-111.

Benefits of Including Derivatives

If you do not provide gradients, solvers estimate gradients via finite differences. If you
provide gradients, your solver need not perform this finite difference estimation, so can
save time and be more accurate, although a finite-difference estimate can be faster for
complicated derivatives. Furthermore, solvers use an approximate Hessian, which can be
far from the true Hessian. Providing a Hessian can yield a solution in fewer iterations. For
example, see “Compare to Optimization Without Gradients and Hessians” on page 6-127.

For constrained problems, providing a gradient has another advantage. A solver can
reach a point x such that x is feasible, but, for this x, finite differences around x always
lead to an infeasible point. Suppose further that the objective function at an infeasible
point returns a complex output, Inf, NaN, or error. In this case, a solver can fail or halt
prematurely. Providing a gradient allows a solver to proceed. To obtain this benefit, you
might also need to include the gradient of a nonlinear constraint function, and set the
SpecifyConstraintGradient option to true. See “Nonlinear Constraints” on page 2-
48.

Choose Input Hessian Approximation for interior-point fmincon

The fmincon interior-point algorithm has many options for selecting an input
Hessian approximation. For syntax details, see “Hessian as an Input” on page 15-81.
Here are the options, along with estimates of their relative characteristics.
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Hessian Relative Memory Usage |Relative Efficiency
'bfgs' (default) High (for large problems) High
'lbfgs' Low to Moderate Moderate
'fin-diff-grads' Low Moderate
'HessianMultiplyFcn' Low (can depend on your Moderate

code)
'HessianFcn' ? (depends on your code) High (depends on your

code)

Use the default 'bfgs' Hessian unless you

* Run out of memory — Try ' lbfgs"' instead of 'bfgs'. If you can provide your own
gradients, try ' fin-diff-grads', and set the SpecifyObjectiveGradient and
SpecifyConstraintGradient options to true.

*  Want more efficiency — Provide your own gradients and Hessian. See “Including
Hessians” on page 2-28, “fmincon Interior-Point Algorithm with Analytic Hessian” on
page 6-85, and “Symbolic Math Toolbox Calculates Gradients and Hessians” on page

6-116.

The reason 'lbfgs' has only moderate efficiency is twofold. It has relatively expensive
Sherman-Morrison updates. And the resulting iteration step can be somewhat inaccurate
due to the 'lbfgs' limited memory.

The reason 'fin-diff-grads' and HessianMultiplyFcn have only moderate
efficiency is that they use a conjugate gradient approach. They accurately estimate the
Hessian of the objective function, but they do not generate the most accurate iteration
step. For more information, see “fmincon Interior Point Algorithm” on page 6-37, and its
discussion of the LDL approach and the conjugate gradient approach to solving

“Equation 6-52".

See Also

More About

. “Checking Validity of Gradients or Jacobians” on page 2-81
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In this section...

“What Are Vector or Matrix Objective Functions?” on page 2-34
“Jacobians of Vector Functions” on page 2-34

“Jacobians of Matrix Functions” on page 2-35

“Jacobians with Matrix-Valued Independent Variables” on page 2-36

What Are Vector or Matrix Objective Functions?

Some solvers, such as fsolve and lsqcurvefit, have objective functions that are
vectors or matrices. The main difference in usage between these types of objective
functions and scalar objective functions on page 2-23 is the way to write their derivatives.
The first-order partial derivatives of a vector-valued or matrix-valued function is called a
Jacobian; the first-order partial derivatives of a scalar function is called a gradient.

For information on complex-valued objective functions, see “Complex Numbers in
Optimization Toolbox Solvers” on page 2-20.

Jacobians of Vector Functions
If x is a vector of independent variables, and F(x) is a vector function, the Jacobian J(x) is

gy = oF(2).

If F has m components, and x has k components, J is an m-by-k matrix.

For example, if

2
F(x) _ ' xl + xe3 ’
sin (%) + 2x9 — 3x3)

then J(x) is

2x1 X3 X2
J(x) = .
cos (x1 +2x9 —3xg) 2cos(xy +2xg —3x3) —3cos(xg +2x9 —3x3)
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The function file associated with this example is:

function [F jacF] = vectorObjective(x)
F = [x(1)72 + x(2)*x(3);
sin(x(1l) + 2*x(2) - 3*x(3))1;
if nargout > 1 % need Jacobian
jacF = [2*x(1),x(3),x(2);
coS(X(1)+2*x(2)-3*x(3)),2*cos(x(1)+2*x(2)-3*x(3)),
-3%cos (x(1)+2*x(2)-3*x(3))1;
end

To indicate to your solver that your objective function includes a Jacobian, set the
SpecifyObjectiveGradient option to true. For example,

options = optimptions('lsgnonlin', 'SpecifyObjectiveGradient', true);

Jacobians of Matrix Functions

The Jacobian of a matrix F(x) is defined by changing the matrix to a vector, column by
column. For example, rewrite the matrix

R, Fy
F=|Fy Fy
F3 Fg3y

as a vector f:

The Jacobian of F is as the Jacobian of f,

J 9

ij ox

J
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If F is an m-by-n matrix, and x is a k-vector, the Jacobian is an mn-by-k matrix.

For example, if

X% x13 +3x§
F(x)=|5x, —xf xg [ %y

J

2 3 4
4 — x5 x] — Xg

then the Jacobian of F is

C o ]
—4x} 5
0 —2x9
Jiw) = 33c12 6x9
—xg / x% 1/x
33c12 —4x% |

Jacobians with Matrix-Valued Independent Variables

If x is a matrix, define the Jacobian of F(x) by changing the matrix x to a vector, column by
column. For example, if

X X
X = { 11 12}
Xo1 %99

then the gradient is defined in terms of the vector

With
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Fi P
F=|Fy Fy |
F3 Fgy

and with f'the vector form of F as above, the Jacobian of F(X) is defined as the Jacobian of

fx):

So, for example,

@) _ Wy sy O Ay

J(@3,2) = .

If F is an m-by-n matrix and x is a j-by-k matrix, then the Jacobian is an mn-by-jk matrix.

See Also

More About
. “Checking Validity of Gradients or Jacobians” on page 2-81
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Writing Objective Functions for Linear or Quadratic
Problems

2-38

The following solvers handle linear or quadratic objective functions:

linprog and intlinprog: minimize
f'x = f(1)*x(1) + f(2)*x(2) +...+ f(n)*x(n).

Input the vector f for the objective. See the examples in “Linear Programming and
Mixed-Integer Linear Programming”.

1sqlin and lsqnonneg: minimize
ICx - dll.

Input the matrix C and the vector d for the objective. See “Linear Least Squares with
Bound Constraints” on page 11-32.

quadprog: minimize
1/2 * X 'Hx + f'x

= 1/2 * (X(1)*H(1,1)*x(1) + 2*¥x(1)*H(1,2)*x(2) +...
+ X(n)*H(n,n)*x(n)) + Tf(1)*x(1) + f(2)*x(2) +...+ Tf(n)*x(n).

Input both the vector f and the symmetric matrix H for the objective. See “Quadratic
Programming”.
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Maximizing an Objective

All solvers attempt to minimize an objective function. If you have a maximization problem,
that is, a problem of the form

max f(x),

then define g(x) = -f(x), and minimize g.

For example, to find the maximum of tan(cos(x)) near x = 5, evaluate:

[x fval] = fminunc(@(x)-tan(cos(x)),5)
Local minimum found.

Optimization completed because the size of the gradient is less than
the default value of the function tolerance.

X =
6.2832

fval =
-1.5574

The maximum is 1.5574 (the negative of the reported fval), and occurs at x = 6.2832.
This answer is correct since, to five digits, the maximum is tan(1) = 1.5574, which occurs
at x = 2m = 6.2832.
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Matrix Arguments

Solvers accept matrix initial point x0, where matrix means an array of any size. They also
accept matrix bounds 1b and ub. Here’s how solvers handle matrix arguments.

» Internally, solvers convert matrix arguments into vectors before processing. For
example, x0 becomes x0 ( : ). For an explanation of this syntax, see the A(:) entry in
colon.

» For output, solvers reshape the solution x to the same size as the input x0.

* When x0 is a matrix, solvers pass X as a matrix of the same size as x0 to both the
objective function and to any nonlinear constraint function.

* Linear constraints on page 2-46, though, take x in vector form, x( : ). In other words,
a linear constraint of the form

A*x = b or Aeg*x = beq

takes x as a vector, not a matrix. Ensure that your matrix A or Aeq has the same
number of columns as x0 has elements, or the solver will error.
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Types of Constraints

Optimization Toolbox solvers have special forms for constraints:
* “Bound Constraints” on page 2-44 — Lower and upper bounds on individual
components: x = [ and x < u.

* “Linear Inequality Constraints” on page 2-46 — A-x < b. A is an m-by-n matrix, which
represents m constraints for an n-dimensional vector x. b is m-dimensional.

* “Linear Equality Constraints” on page 2-47 — Aeq-x = beq. Equality constraints have
the same form as inequality constraints.

* “Nonlinear Constraints” on page 2-48 — c(x) = 0 and ceq(x) = 0. Both ¢ and ceq are
scalars or vectors representing several constraints.

Optimization Toolbox functions assume that inequality constraints are of the form c;(x) <
0 or A x = b. Express greater-than constraints as less-than constraints by multiplying
them by -1. For example, a constraint of the form c;(x) = 0 is equivalent to the constraint
-ci(x) = 0. A constraint of the form A-x = b is equivalent to the constraint -A-x < -b. For
more information, see “Linear Inequality Constraints” on page 2-46 and “Nonlinear
Constraints” on page 2-48.

You can sometimes write constraints in several ways. For best results, use the lowest
numbered constraints possible:

Bounds

Linear equalities

Linear inequalities

Nonlinear equalities

ga A W N R

Nonlinear inequalities

For example, with a constraint 5 x = 20, use a bound x < 4 instead of a linear inequality
or nonlinear inequality.

For information on how to pass extra parameters to constraint functions, see “Passing
Extra Parameters” on page 2-64.
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Iterations Can Violate Constraints
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In this section...

“Intermediate Iterations can Violate Constraints” on page 2-42
“Algorithms That Satisfy Bound Constraints” on page 2-42
“Solvers and Algorithms That Can Violate Bound Constraints” on page 2-42

Intermediate Iterations can Violate Constraints

Be careful when writing your objective and constraint functions. Intermediate iterations
can lead to points that are infeasible (do not satisfy constraints). If you write objective or
constraint functions that assume feasibility, these functions can error or give unexpected
results.

For example, if you take a square root or logarithm of x, and x < 0, the result is not real.
You can try to avoid this error by setting 0 as a lower bound on x. Nevertheless, an
intermediate iteration can violate this bound.

Algorithms That Satisfy Bound Constraints

Some solver algorithms satisfy bound constraints at every iteration:

+ fmincon interior-point, sgp, and trust-region-reflective algorithms
* lsqcurvefit trust-region-reflective algorithm

* lsgnonlin trust-region-reflective algorithm

* fminbnd

Note If you set a lower bound equal to an upper bound, iterations can violate these
constraints.

Solvers and Algorithms That Can Violate Bound Constraints

The following solvers and algorithms can violate bound constraints at intermediate
iterations:
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« fmincon active-set algorithm
+ fgoalattain solver

* fminimax solver

+ fseminf solver

See Also

More About

. “Bound Constraints” on page 2-44
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Bound Constraints

2-44

Lower and upper bounds limit the components of the solution x.

If you know bounds on the location of an optimum, you can obtain faster and more
reliable solutions by explicitly including these bounds in your problem formulation.

Give bounds as vectors with the same length as x, or as matrices on page 2-40 with the
same number of elements as x.

* If a particular component has no lower bound, use - Inf as the bound; similarly, use
Inf if a component has no upper bound.

* Ifyou have only bounds of one type (upper or lower), you do not need to write the
other type. For example, if you have no upper bounds, you do not need to supply a
vector of Infs.

» If only the first m out of n components have bounds, then you need only supply a
vector of length m containing bounds. However, this shortcut causes solvers to throw a
warning.

For example, suppose your bounds are:

X3
X3

A v
w

Write the constraint vectors as

1 = [-Inf; -Inf; 8]
u = [Inf; 3] (throws a warning) or u = [Inf; 3; Inf].

Tip Use Inf or -Inf instead of a large, arbitrary bound to lower memory usage and
increase solver speed. See “Use Inf Instead of a Large, Arbitrary Bound” on page 4-13.

You need not give gradients for bound constraints; solvers calculate them automatically.
Bounds do not affect Hessians.

For a more complex example of bounds, see “Set Up a Linear Program, Solver-Based” on
page 1-15.
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See Also

More About

. “Iterations Can Violate Constraints” on page 2-42
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Linear Constraints

In this section...
“Linear Inequality Constraints” on page 2-46
“Linear Equality Constraints” on page 2-47

Linear Inequality Constraints

Linear inequality constraints have the form A-x < b. When A is m-by-n, there are m
constraints on a variable x with n components. You supply the m-by-n matrix A and the m-

component vector b.

Even if you pass an initial point X0 as a matrix, solvers pass the current point x as a
column vector to linear constraints. See “Matrix Arguments” on page 2-40.

For example, suppose that you have the following linear inequalities as constraints:

X1 + X3 < 4,
2X; - X3 = -2,
X4 - Xy + X3 - X4 = 9.

Here m = 3 and n = 4.

Write these using the following matrix A and vector b:

1 0 1 O
A=0 -2 1 0],
-1 1 -1 1
4
b=| 2
-9

Notice that the “greater than” inequalities were first multiplied by -1 in order to get them
into “less than” inequality form. In MATLAB syntax:

1010;
210;

’
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.11 -117;
b =14;2;-91;

You do not need to give gradients for linear constraints; solvers calculate them
automatically. Linear constraints do not affect Hessians.

For a more complex example of linear constraints, see “Set Up a Linear Program, Solver-
Based” on page 1-15.

Linear Equality Constraints

Linear equalities have the form Aeq-x = beq, which represents m equations with n-
component vector x. You supply the m-by-n matrix Aeq and the m-component vector begq.

You do not need to give gradients for linear constraints; solvers calculate them
automatically. Linear constraints do not affect Hessians. The form of this type of
constraint is the same as for “Linear Inequality Constraints” on page 2-46.
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Nonlinear Constraints

2-48

Nonlinear inequality constraints have the form c(x) = 0, where c is a vector of constraints,
one component for each constraint. Similarly, nonlinear equality constraints are of the
form ceq(x) = 0.

Note Nonlinear constraint functions must return both c and ceq, the inequality and
equality constraint functions, even if they do not both exist. Return an empty entry [ ] for
a nonexistent constraint.

For example, suppose that you have the following inequalities as constraints:

Write these constraints in a function file as follows:

function [c,ceq]=ellipseparabola(x)

c(l) = (x(1)72)/9 + (x(2)"2)/4 - 1;
c(2) = x(1)72 - x(2) - 1;

ceq = [1;

end

ellipseparabola returns an empty entry [] for ceq, the nonlinear equality function.
Also, both inequalities were put into < 0 form.

Including Gradients in Constraint Functions

If you provide gradients for ¢ and ceq, your solver can run faster and give more reliable
results.

Providing a gradient has another advantage. A solver can reach a point x such that x is
feasible, but finite differences around x always lead to an infeasible point. In this case, a
solver can fail or halt prematurely. Providing a gradient allows a solver to proceed.

To include gradient information, write a conditionalized function as follows:

function [c,ceq,gradc,gradceql=ellipseparabola(x)
c(l) = x(1)°2/9 + x(2)72/4 - 1;
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c(2) = x(1)"2 - x(2) - 1;
ceq = [1;
if nargout > 2
gradc = [2*x(1)/9, 2*x(1);
x(2)/2, -11;
gradceq = [];
end

See “Writing Scalar Objective Functions” on page 2-23 for information on conditionalized
functions. The gradient matrix has the form

gradc; i = [ac(j)/ox;].

The first column of the gradient matrix is associated with ¢ (1), and the second column is
associated with ¢ (2). This is the transpose of the form of Jacobians.

To have a solver use gradients of nonlinear constraints, indicate that they exist by using
optimoptions:

options = optimoptions(@fmincon, 'SpecifyConstraintGradient', true);
Make sure to pass the options structure to your solver:

[x,fval] = fmincon(@myobj,x0,A,b,Aeq,beq, b, ub,
@ellipseparabola,options)

If you have a Symbolic Math Toolbox license, you can calculate gradients and Hessians

automatically, as described in “Symbolic Math Toolbox Calculates Gradients and
Hessians” on page 6-116.

Anonymous Nonlinear Constraint Functions

For information on anonymous objective functions, see “Anonymous Function Objectives”
on page 2-25.

Nonlinear constraint functions must return two outputs. The first output corresponds to
nonlinear inequalities, and the second corresponds to nonlinear equalities.

Anonymous functions return just one output. So how can you write an anonymous
function as a nonlinear constraint?
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The deal function distributes multiple outputs. For example, suppose your nonlinear
inequalities are

Suppose that your nonlinear equality is
X = tanh(x;).
Write a nonlinear constraint function as follows:

c = @Q(x)[x(1)"2/9 + x(2)"2/4 - 1;
x(1)"2 - x(2) - 11;

ceq = @(x)tanh(x(1)) - x(2);

nonlinfcn = @(x)deal(c(x),ceq(x));

To minimize the function cosh(x;) + sinh(x,) subject to the constraints in nonlinfcn, use
fmincon:

obj = @(x)cosh(x(1))+sinh(x(2));
opts = optimoptions(@fmincon, 'Algorithm', 'sqp');
z = fmincon(obj,[0;0],[1,[1,[1,[1,[1,[1,nonlinfcn,opts)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is
non-decreasing in feasible directions, to within the default
value of the function tolerance, and constraints are satisfied
to within the default value of the constraint tolerance.

7z =

-0.6530
-0.5737

To check how well the resulting point z satisfies the constraints, use nonlinfcn:
[cout,ceqout] = nonlinfcn(z)
cout =

-0.8704
0
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ceqout =
0

z indeed satisfies all the constraints to within the default value of the
ConstraintTolerance constraint tolerance, le-6.
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Or Instead of And Constraints
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In general, solvers takes constraints with an implicit AND:
constraint 1 AND constraint 2 AND constraint 3 are all satisfied.
However, sometimes you want an OR:

constraint 1 OR constraint 2 OR constraint 3 is satisfied.

These formulations are not logically equivalent, and there is generally no way to express
OR constraints in terms of AND constraints.

Tip Fortunately, nonlinear constraints are extremely flexible. You get OR constraints
simply by setting the nonlinear constraint function to the minimum of the constraint
functions.

The reason that you can set the minimum as the constraint is due to the nature of
“Nonlinear Constraints” on page 2-48: you give them as a set of functions that must be
negative at a feasible point. If your constraints are

Fi(x) < 0 OR Fy(x) < 0 OR F3(x) < 0,
then set the nonlinear inequality constraint function c(x) as:
c(x) = min(F; (x),F,(x),F3(x)).

c(x) is not smooth, which is a general requirement for constraint functions, due to the
minimum. Nevertheless, the method often works.

Note You cannot use the usual bounds and linear constraints in an OR constraint.
Instead, convert your bounds and linear constraints to nonlinear constraint functions, as
in this example.

For example, suppose your feasible region is the L-shaped region: x is in the rectangle -
1=x(1)=1,0=x(2) =10Rxisintherectangle 0 = x(1) =1, -1 =x(2) = 1.
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|
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Code for creating the figure

o°

Write the x and y coordinates of the figure, clockwise from (0,0)
= [Ol_ll_llllllolo];

= [00011111'11']-'@];

plot(x,y)

xlim([-1.2 1.2])

ylim([-1.2 1.2])

axis equal

< X

To represent a rectangle as a nonlinear constraint, instead of as bound constraints,
construct a function that is negative inside the rectangle a = x(1) = b, ¢ = x(2) = d:
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function cout = rectconstr(x,a,b,c,d)
% Negative when x is in the rectangle [a,bl[c,d]
% First check that a,b,c,d are in the correct order

if (b <= a) || (d <= ¢)
error('Give a rectangle a < b, c <d'")
end

cout = max([(x(1)-b), (x(2)-d), (a-x(1)),(c-x(2))]);

Following the prescription of using the minimum of nonlinear constraint functions, for the
L-shaped region, the nonlinear constraint function is:

function [c,ceq] = rectconstrfcn(x)

ceq = []; % no equality constraint

F(1) rectconstr(x,-1,1,0,1); one rectangle
F(2) rectconstr(x,0,1,-1,1); another rectangle
c = min(F); % for OR constraints

%
%
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4115

Code for creating the figure

Plot rectconstrfcn over the region max|x| <= 2fora=-1,b=1,¢c=0,d = 1:

[xx,yy] = meshgrid(-2:.1:2);
X = [xx(:),yy(:)]; % one row per point

z = zeros(length(x),1); % allocate
for ii = 1:length(x)

[z(ii),~] = rectconstrfcn(x(ii,:));
end

z = reshape(z,size(xx));
surf(xx,yy,z)
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colorbar

axis equal

xlabel('x");ylabel('y")

view(0,90)

Suppose your objective function is

fun = @(x)exp(x(1l)) * (4*x(1)"2 + 2*x(2)"2 + 4*x(1)*x(2) + 2*x(2) + 1);
Minimize fun over the L-shaped region:

opts = optimoptions(@fmincon, 'Algorithm', 'interior-point', 'Display','off');
x0 = [-.5,.6]; % an arbitrary guess

[xsol,fval,eflag] = fmincon(fun,x0,[1,[1,[1,[1,[1,[]1,@rectconstrfcn,opts)

xsol =

0.4998 -0.9996

fval =

2.4650e-07

eflag =
1

Clearly, the solution xsol is inside the L-shaped region. The exit flag is 1, indicating that
xsol is a local minimum.
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How to Use All Types of Constraints

This section contains an example of a nonlinear minimization problem with all possible
types of constraints. The objective function is in the local function myobj (x). The
nonlinear constraints are in the local function myconstr(x). This example does not use
gradients.

function [x fval exitflag] = fullexample
x0 = [1; 4; 5; 2; 5];
b = [-Inf; -Inf; ©O; -Inf; 11;

ub [ Inf; 1Inf; 20; Inf; Inf];
Aeq = [1 -0.3 0 0 0];
beq = 0;
A=[00 0 -1 0.1
06 06 1-0.5
0060 -1 0 0.9];
b =1[0; 0; 0];
opts = optimoptions(@fmincon, 'Algorithm', 'sqp');

[x,fval,exitflag]=fmincon(@myobj,x0,A,b,Aeq,beq,1b,ub, ...
@myconstr,opts)

function [c, ceq] = myconstr(x)

x(2)*x(5) - 71

x(4)"2 - 67];

(5) + 3*x(1)"2*x(3) - 20.875;

c = [x(1) - 0.2%
0.9*%x(3) -

ceq = 3*x(2)"2*x

Calling fullexample produces the following display in the Command Window:

[x fval exitflag] = fullexample;

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

X =

0.6114
2.0380
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1.3948
0.1572
1.5498

fval =
37.3806

exitflag =
1

See Also

More About

. “Write Constraints”
. “Constrained Optimization”
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Objective and Nonlinear Constraints in the Same
Function

This example shows how to avoid calling a function twice when it computes values for
both objective and constraints.

You typically use such a function in a simulation. Solvers such as fmincon evaluate the
objective and nonlinear constraint functions separately. This evaluation is wasteful when
you use the same calculation for both results.

To avoid wasting time, have your calculation use a nested function to evaluate the
objective and constraint functions only when needed, by retaining the values of time-
consuming calculations. Using a nested function avoids using global variables, yet lets
intermediate results be retained and shared between the objective and constraint
functions.

Note Because of the way ga calls nonlinear constraint functions, the technique in this
example usually does not reduce the number of calls to the objective or constraint
functions.

Step 1. Function that computes objective and constraints.

For example, suppose computeall is the expensive (time-consuming) function called by
both the objective function and by the nonlinear constraint functions. Suppose you want
to use fmincon as your optimizer.

Write a function that computes a portion of Rosenbrock’s function f1 and a nonlinear

constraint c1 that keeps the solution in a disk of radius 1 around the origin. Rosenbrock’s
function is

flx) = 100(x2 —x? )2 +(1-x)%,

which has a unique minimum value of 0 at (1,1). See “Solve a Constrained Nonlinear
Problem” on page 1-5.

In this example there is no nonlinear equality constraint, so ceql = []. Add a pause(1)
statement to simulate an expensive computation.
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function [fl,cl,ceql] = computeall(x)
ceql = [];
cl = norm(x)"2 - 1;
fl = 100%(x(2) - x(1)"2)"2 + (1-x(1))"2;
pause(l) % simulate expensive computation
end

Save computeall.m as a file on your MATLAB path.
Step 2. Embed function in nested function that keeps recent values.

Suppose the objective function is

vy = 100(x, - X12)? + (1 -

+ 20%(x5 - X42)? + 5%(1 -

computeall returns the first part of the objective function. Embed the call to
computeall in a nested function:

function [x,f,eflag,outpt] = runobjconstr(x0,opts)

if nargin == 1 % No options supplied
opts = [];
end
xLast = []; % Last place computeall was called
myf = []1; % Use for objective at xLast
myc = []; % Use for nonlinear inequality constraint
myceq = []; % Use for nonlinear equality constraint

fun = @objfun; % the objective function, nested below
cfun = @constr; % the constraint function, nested below

Call fmincon
x, f,eflag,outpt] = fmincon(fun,x0,[1,[1,[1,[1,[]1,[],cfun,opts);

— o°

function y = objfun(x)
if ~isequal(x,xLast) % Check if computation is necessary
[myf,myc,myceq] = computeall(x);
xLast = x;
end
% Now compute objective function
y = myf + 20*%(x(3) - x(4)72)"2 + 5%(1 - x(4))"2;
end
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function [c,ceq] = constr(x)
if ~isequal(x,xLast) % Check if computation is necessary
[myf,myc,myceq] = computeall(x);
xLast = Xx;
end
% Now compute constraint functions
c = myc; % In this case, the computation is trivial
ceq = myceq;
end

end
Save the nested function as a file named runobjconstr.m on your MATLAB path.
Step 3. Time to run with nested function.

Run the file, timing the call with tic and toc.

opts = optimoptions(@fmincon, 'Algorithm', "interior-point"', 'Display','off');
x0 =1[-1,1,1,2];

tic

[x,fval,exitflag,output] = runobjconstr(x0,opts);

toc

Elapsed time is 203.797275 seconds.
Step 4. Time to run without nested function.

Compare the times to run the solver with and without the nested function. For the run
without the nested function, save myrosen2.m as the objective function file, and
constr.m as the constraint:

function y = myrosen2(x)
fl = computeall(x); % get first part of objective
y = fl + 20%(x(3) - x(4)72)"2 + 5*%(1 - x(4))"2;
end

function [c,ceq] = constr(x)
[~,c,ceq] = computeall(x);
end

Run fmincon, timing the call with tic and toc.

tic
[x,fval,exitflag,output] = fmincon(@myrosen2,x0, ...
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(1, 01,01, 01,01, [1,@constr,opts);
toc

Elapsed time is 406.771978 seconds.

The solver takes twice as long as before, because it evaluates the objective and constraint
separately.

Step 5. Save computing time with parallel computing.

If you have a Parallel Computing Toolbox license, you can save even more time by setting
the UseParallel option to true.

parpool

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.
ans =

Pool with properties:

Connected: true
NumWorkers: 4
Cluster: local
AttachedFiles: {}
IdleTimeout: 30 minute(s) (30 minutes remaining)
SpmdEnabled: true

opts = optimoptions(opts, 'UseParallel’, true);

tic

[x,fval,exitflag,output] = runobjconstr(x0,opts);
toc

Elapsed time is 97.528110 seconds.
In this case, enabling parallel computing cuts the computational time in half.

Compare the runs with parallel computing, with and without a nested function:

tic

[x,fval,exitflag,output] = fmincon(@myrosen2,xo, ...
(1,01,01,01,[1,[1,@constr,opts);

toc

Elapsed time is 188.985178 seconds.
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In this example, computing in parallel but not nested takes about the same time as

computing nested but not parallel. Computing both nested and parallel takes half the time
of using either alone.

See Also

Related Examples

. “Solve a Constrained Nonlinear Problem” on page 1-5

More About

. “Optimizing a Simulation or Ordinary Differential Equation” on page 4-32
. “Parallel Computing”
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Extra Parameters, Fixed Variables, or Data

Sometimes objective or constraint functions have parameters in addition to the
independent variable. The extra parameters can be data, or can represent variables that
do not change during the optimization. There are three methods of passing these
parameters:

* “Anonymous Functions” on page 2-64

* “Nested Functions” on page 2-66

* “Global Variables” on page 2-67

Global variables are troublesome because they do not allow names to be reused among
functions. It is better to use one of the other two methods.

For example, suppose you want to minimize the function

flx) = (a—bx12 +x{L /3)3512 + %1 %9 +(—c+cx§)x§

(2-3)

for different values of a, b, and c. Solvers accept objective functions that depend only on a
single variable (x in this case). The following sections show how to provide the additional
parameters a, b, and c. The solutions are for parameter valuesa =4, b =2.1,andc =4
near x, = [0.5 0.5] using fminunc.

Anonymous Functions

To pass parameters using anonymous functions:
1  Write a file containing the following code:

function y = parameterfun(x,a,b,c)
y = (a - b*x(1)"2 + x(1)74/3)*x(1)"2 + x(1)*x(2) + ...
(-c + c*x(2)72)*x(2)"2;
2 Assign values to the parameters and define a function handle f to an anonymous
function by entering the following commands at the MATLAB prompt:
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a=4; b=2.1; c =4; % Assign parameter values
x0 = [0.5,0.5];
f = @(x)parameterfun(x,a,b,c);

Call the solver fminunc with the anonymous function:
[x,fval]l] = fminunc(f,x0)

The following output is displayed in the command window:
Local minimum found.

Optimization completed because the size of the gradient is less than
the default value of the function tolerance.

X =
-0.0898 0.7127

fval =
-1.0316

Note The parameters passed in the anonymous function are those that exist at the time
the anonymous function is created. Consider the example

a
f

4;, b =2.1; c = 4;
@(x)parameterfun(x,a,b,c)

Suppose you subsequently change, a to 3 and run

[x,fval]l] = fminunc(f,x0)

You get the same answer as before, since parameterfun uses a = 4, the value when f
was created.

To change the parameters that are passed to the function, renew the anonymous function
by reentering it:

a
f

3;
@(x)parameterfun(x,a,b,c)

You can create anonymous functions of more than one argument. For example, to use
lsqcurvefit, first create a function that takes two input arguments, x and xdata:
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fh = @(x,xdata) (sin(x).*xdata +(x.”2).*cos(xdata));
X = pi; xdata = pi*[4;2;3];
fh(x, xdata)

ans =

9.8696
9.8696
9.8696

Now call lsqcurvefit:

% Assume ydata exists
x = lsqcurvefit(fh,x,xdata,ydata)

Nested Functions

To pass the parameters for “Equation 2-3” via a nested function, write a single file that

* Accepts a, b, ¢, and x0 as inputs
* Contains the objective function as a nested function
* Calls fminunc

Here is the code for the function file for this example:

function [x,fval]l] = runnested(a,b,c,x0)
[x,fval] = fminunc(@nestedfun,x0);
% Nested function that computes the objective function
function y = nestedfun(x)
y = (a - b*x(1)"2 + x(1)74/3)*x(1)"2 + x(1)*x(2) +...
(-c + c*x(2)72)*x(2)"2;
end
end

The objective function is the nested function nestedfun, which has access to the
variables a, b, and c.

To run the optimization, enter:

a=4; b=2.1; c =4;% Assign parameter values
x0 = [0.5,0.5];

[x,fval] = runnested(a,b,c,x0)

The output is the same as in “Anonymous Functions” on page 2-64.
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Global Variables

Global variables can be troublesome, so it is better to avoid using them. Also, global
variables fail in parallel computations. See “Factors That Affect Results” on page 13-18.

To use global variables, declare the variables to be global in the workspace and in the
functions that use the variables.

1 Write a function file:

function y = globalfun(x)

global a b ¢

y = (a - b*xX(1)"2 + x(1)™4/3)*x(1)"2 + x(1)*x(2) + ...
(-c + c*x(2)72)*x(2)"2;

2 In your MATLAB workspace, define the variables and run fminunc:
global a b c;
a=4; b=2.1; c =4; % Assign parameter values
x0 = [0.5,0.5];
[x,fval] = fminunc(@globalfun,x0)

The output is the same as in “Anonymous Functions” on page 2-64.
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What Are Options?

2-68

Options are a way of combining a set of name-value pairs. They are useful because they
allow you to:

* Tune or modify the optimization process.
* Select extra features, such as output functions and plot functions.
* Save and reuse settings.

They simplify solver syntax—you don’t have to include a lot of name-value pairs in a call
to a solver.

To see how to set and change options, see “Set and Change Options” on page 2-70.

For an overview of all options, including which solvers use each option, see “Optimization
Options Reference” on page 14-8.
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Options in Common Use: Tuning and Troubleshooting

You set or change options when the default settings do not work sufficiently well. This can
mean the solver takes too long to converge, the solver fails, or you are unsure of the
reliability of the result.

To tune your solver for improved speed or accuracy, try setting these options first:

* “Choosing the Algorithm” on page 2-8 — Algorithm

* “Tolerances and Stopping Criteria” on page 2-78 — OptimalityTolerance,
StepTolerance, MaxFunctionEvaluations, and MaxIterations

* Finite differences — FiniteDifferenceType and FiniteDifferenceStepSize
To diagnose and troubleshoot, try setting these options first:

» “Iterative Display” on page 3-16 — Display
* Function evaluation errors — FunValCheck

* “Plot Functions” on page 3-30 and “Output Functions” on page 3-36 — PLlotFcn
and QutputFcn

See Also

optimoptions | optimset

Related Examples
. “Improve Results”

More About

. “Solver Outputs and Iterative Display”
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Set and Change Options

The recommended way to set options is to use the optimoptions function. For example,
to set the fmincon algorithm to sqp, set iterative display, and set a small value of the
ConstraintTolerance tolerance:

options = optimoptions('fmincon', ...
'Algorithm', 'sqp', 'Display', 'iter', 'ConstraintTolerance',le-12);

Note Use optimset instead of optimoptions for the fminbnd, fminsearch, fzero,
and Lsqgnonneg solvers. These are the solvers that do not require an Optimization
Toolbox license.

Change options as follows:
* Dot notation. For example,

options.StepTolerance = le-10;
* optimoptions. For example,

options = optimoptions(options, 'StepTolerance',le-10);
* Reset an option to default using resetoptions. For example,

options = resetoptions(options, 'StepTolerance');

Reset more than one option at a time by passing a cell array of option names, such as
{'Algorithm', 'StepTolerance'}.

Note Ensure that you pass options in your solver call. For example,

[x,fval] = fmincon(@objfun,x0,[1,[1,[1,[],1lb,ub,@onlcon,options);

You can also set and change options using the “Optimization App” on page 5-2.
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See Also

More About

. “Optimization Options Reference” on page 14-8
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Choose Between optimoptions and optimset
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Previously, the recommended way to set options was to use optimset. Now the general
recommendation is to use optimoptions, with some caveats listed below.

optimset still works, and it is the only way to set options for solvers that are available
without an Optimization Toolbox license: fTminbnd, fminsearch, fzero, and
lsgnonneg.

Note Some other toolboxes use optimization options and require you to pass in options
created using optimset, not optimoptions. Check the documentation for your
toolboxes.

optimoptions organizes options by solver, with a more focused and comprehensive
display than optimset:

* Creates and modifies only the options that apply to a solver
» Shows your option choices and default values for a specific solver/algorithm

» Displays links for more information on solver options and other available solver
algorithms

intlinprog uses only optimoptions options.
The main difference in creating options is:

* For optimoptions, you include the solver name as the first argument.

options = optimoptions(SolverName,Name,Value,...)
+ For optimset, the syntax does not include the solver name.

options = optimset(Name,Value,...)

In both cases, you can query or change options by using dot notation. See “Set and
Change Options” on page 2-70 and “View Options” on page 2-76.

For example, compare the display of optimoptions to that of optimset.
options = optimoptions(@fminunc, 'SpecifyObjectiveGradient',true)

options =
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fminunc options:

Options used by current Algorithm ('trust-region'):
(Other available algorithms: 'quasi-newton')

Set properties:
SpecifyObjectiveGradient: 1

Default properties:
Algorithm: 'trust-region’
CheckGradients: 0
Display: 'final'’
FiniteDifferenceStepSize: 'sqrt(eps)'
FiniteDifferenceType: 'forward'
FunctionTolerance: 1.0000e-06
HessianFcn: []
HessianMultiplyFcn: []
MaxFunctionEvaluations: '100*numberOfVariables'
MaxIterations: 400
OptimalityTolerance: 1.0000e-06
OutputFcn: []
PlotFcn: []
StepTolerance: 1.0000e-06
SubproblemAlgorithm: 'cg'
TypicalX: ‘'ones(numberOfVariables,1)'

Show options not used by current Algorithm ('trust-region')

options = optimset('GradObj','on")

options
struct with fields:

Display:
MaxFunEvals:
MaxIter:

TolFun:

TolX:
FunValCheck:
OutputFcn:
PlotFcns:
ActiveConstrTol:
Algorithm:
AlwaysHonorConstraints:

—— e — e ——
[ S S N S S S S S S )
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DerivativeCheck:
Diagnostics:
DiffMaxChange:
DiffMinChange:
FinDiffRelStep:
FinDiffType:
GoalsExactAchieve:
GradConstr:
GradObj:

HessFcn:

Hessian:

HessMult:
HessPattern:
HessUpdate:
InitBarrierParam:
InitTrustRegionRadius:
Jacobian:
JacobMult:
JacobPattern:
LargeScale:
MaxNodes:
MaxPCGIter:
MaxProjCGIter:
MaxSQPIter:
MaxTime:
MeritFunction:
MinAbsMax:
NoStopIfFlatInfeas:
ObjectiveLimit:
PhaseOneTotalScaling:
Preconditioner:
PrecondBandWidth:
RelLineSrchBnd:
RelLineSrchBndDuration:
ScaleProblem:
Simplex:
SubproblemAlgorithm:
TolCon:

TolConSQP:
TolGradCon:

TolPCG:

TolProjCG:
TolProjCGAbs:
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]
]

TypicalX:

[
UseParallel: [
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View Options

optimoptions “hides” some options, meaning it does not display their values. For
example, it hides the DiffMinChange option.

options = optimoptions('fsolve', 'DiffMinChange',le-3)
options =
fsolve options:

Options used by current Algorithm ('trust-region-dogleg'):
(Other available algorithms: 'levenberg-marquardt', 'trust-region')

Set properties:
No options set.

Default properties:
Algorithm: 'trust-region-dogleg'
CheckGradients: 0
Display: 'final'
FiniteDifferenceStepSize: 'sqrt(eps)’
FiniteDifferenceType: 'forward'
FunctionTolerance: 1.0000e-06
MaxFunctionEvaluations: '100*numberOfVariables'
MaxIterations: 400
OptimalityTolerance: 1.0000e-06
OutputFcn:
PlotFcn:
SpecifyObjectiveGradient:
StepTolerance: 1.0000e-06
TypicalX: 'ones(numberOfVariables,1)'
UseParallel: 0

]
]

O ——

Show options not used by current Algorithm ('trust-region-dogleg')

You can view the value of any option, including “hidden” options, by using dot notation.
For example,

options.DiffMinChange
ans =

1.0000e-03
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Solver reference pages list “hidden” options in italics.
There are two reason that some options are “hidden”:

» There are better ways. For example, the FiniteDifferenceStepSize option
supersedes both the DiffMinChange and DiffMaxChange options. Therefore, both
DiffMinChange and DiffMaxChange are “hidden”.

* They are rarely used, or are difficult to set appropriately. For example, the fmincon
MaxSQPIter option is recondite and hard to choose, and so is “hidden”.

* For a list of hidden options, see “Hidden Options” on page 14-22.

See Also

More About

. “Optimization Options Reference” on page 14-8
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Tolerances and Stopping Criteria

The number of iterations in an optimization depends on a solver's stopping criteria. These
criteria include several tolerances you can set. Generally, a tolerance is a threshold
which, if crossed, stops the iterations of a solver.

Set tolerances and other criteria using optimoptions as explained in “Set and Change
Options” on page 2-70.

Tip Generally set tolerances such as OptimalityTolerance and StepTolerance to be
well above eps, and usually above le-14. Setting small tolerances does not always result
in accurate results. Instead, a solver can fail to recognize when it has converged, and can
continue futile iterations. A tolerance value smaller than eps effectively disables that
stopping condition. This tip does not apply to fzero, which uses a default value of eps
for the TolX tolerance.

You can find the default tolerances in the “Optimization App” on page 5-2. Some default
tolerances differ for different algorithms, so set both the solver and the algorithm.

Problem Setup and Results Options
[ 1 Stopping criteria *
Solver: fmincon - Constrained nonlinear minimization  *
Max iterations: @ Use default: 1000
Algorithm: | Interior point % ]
Problem 2 Specify:
Objective function: hd Max function evaluations: @ Use default: 3000
Derivatives:  Approximated by solver ~ “) Specify:

optimoptions displays tolerances. For example,

options = optimoptions('fmincon');
[options.OptimalityTolerance,options.FunctionTolerance,options.StepTolerance]

ans =
1.0e-06 *

1.0000 1.0000 0.0001
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You can also find the default tolerances in the options section of the solver function
reference page.

StepTolerance is a lower bound on the size of a step, meaning the norm of (x; - X;41).
If the solver attempts to take a step that is smaller than StepTolerance, the
iterations end. StepTolerance is sometimes used as a relative bound, meaning
iterations end when |(x; - x;41)| < StepTolerance*(1 + |x]|), or a similar relative
measure.

Iterations end
when the last step
is smaller than
FunctionTolerance
9 or StepTolerance

FunctionTolerance {

StepTolerance

For some algorithms, FunctionTolerance is a lower bound on the change in the
value of the objective function during a step. For those algorithms, if |f(x;) - f(x;+1)| <
FunctionTolerance, the iterations end. FunctionTolerance is sometimes used as
a relative bound, meaning iterations end when |f(x;) - f(xi41)|

< FunctionTolerance*(1 + |f(x;)|), or a similar relative measure.

Note Unlike other solvers, fTminsearch stops when it satisfies both TolFun (the
function tolerance) and TolX (the step tolerance).

OptimalityTolerance is a tolerance for the first-order optimality measure. If the
optimality measure is less than OptimalityTolerance, the iterations end.
OptimalityTolerance can also be a relative bound on the first-order optimality
measure. First-order optimality measure is defined in “First-Order Optimality
Measure” on page 3-11.

ConstraintTolerance is an upper bound on the magnitude of any constraint
functions. If a solver returns a point x with c(x) > ConstraintTolerance or |ceq(x)|
> ConstraintTolerance, the solver reports that the constraints are violated at x.

ConstraintTolerance can also be a relative bound.
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Note ConstraintTolerance operates differently from other tolerances. If
ConstraintTolerance is not satisfied (i.e., if the magnitude of the constraint
function exceeds ConstraintTolerance), the solver attempts to continue, unless it
is halted for another reason. A solver does not halt simply because
ConstraintTolerance is satisfied.

* MaxIterations is a bound on the number of solver iterations.
MaxFunctionEvaluations is a bound on the number of function evaluations.
Iterations and function evaluations are discussed in “Iterations and Function Counts”
on page 3-10.

There are two other tolerances that apply to particular solvers: ToLPCG and MaxPCGIter.
These relate to preconditioned conjugate gradient steps. For more information, see
“Preconditioned Conjugate Gradient Method” on page 6-23.

There are several tolerances that apply only to the fmincon interior-point algorithm. For
more information, see Interior-Point Algorithm in fmincon options.

There are several tolerances that apply only to intlinprog. See “Some “Integer”
Solutions Are Not Integers” on page 8-46 and “Branch and Bound” on page 8-39.

See Also

More About

. “Optimization Options Reference” on page 14-8
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Checking Validity of Gradients or Jacobians

In this section...

“Check Gradient or Jacobian in Objective Function” on page 2-81
“How to Check Derivatives” on page 2-81

“Example: Checking Derivatives of Objective and Constraint Functions” on page 2-82

Check Gradient or Jacobian in Objective Function

Many solvers allow you to supply a function that calculates first derivatives (gradients or
Jacobians) of objective or constraint functions. You can check whether the derivatives
calculated by your function match finite-difference approximations. This check can help
you diagnose whether your derivative function is correct.

» If a component of the gradient function is less than 1, “match” means the absolute
difference of the gradient function and the finite-difference approximation of that
component is less than 1e-6.

* Otherwise, “match” means that the relative difference is less than le-6.

The CheckGradients option causes the solver to check the supplied derivative against a
finite-difference approximation at just one point. If the finite-difference and supplied
derivatives do not match, the solver errors. If the derivatives match to within 1e-6, the
solver reports the calculated differences, and continues iterating without further
derivative checks. Solvers check the match at a point that is a small random perturbation
of the initial point x0, modified to be within any bounds. Solvers do not include the
computations for CheckGradients in the function count; see “Iterations and Function
Counts” on page 3-10.

How to Check Derivatives
o At the MATLAB command line:

1 Setthe SpecifyObjectiveGradient or SpecifyConstraintGradient
options to true using optimoptions. Make sure your objective or constraint
functions supply the appropriate derivatives.

2 Setthe CheckGradients option to true.
» Using the Optimization app:
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1 In the Problem Setup and Results pane, choose Derivatives: Objective
function: Gradient supplied or Nonlinear constraint function:
Derivatives: Gradient supplied. Make sure your objective or constraint
functions supply the appropriate derivatives.

2 In the Options pane, check User-supplied derivatives > Validate user-
supplied derivatives

Central finite differences are more accurate than the default forward finite differences. To
use central finite differences:

* At the MATLAB command line, set FiniteDifferenceType option to 'central’
using optimoptions.

* Using the Optimization app, in the Approximated derivatives pane, set Type to
central differences.

Example: Checking Derivatives of Objective and Constraint
Functions

* “Objective and Constraint Functions” on page 2-82
* “Checking Derivatives at the Command Line” on page 2-83
* “Checking Derivatives with the Optimization App” on page 2-84

Objective and Constraint Functions

Consider the problem of minimizing the Rosenbrock function within the unit disk as
described in “Solve a Constrained Nonlinear Problem” on page 1-5. The rosenboth
function calculates the objective function and its gradient:

function [f g H] = rosenboth(x)
f = 100*%(x(2) - x(1)72)7"2 + (1-x(1))"2;

if nargout > 1
g = [-400*%(x(2)-x(1)"2)*x(1)-2*(1-x(1));
200%(x(2)-x(1)"2)1;

if nargout > 2
H = [1200*x(1)"2-400*x(2)+2, -400*x(1);
-400*x (1), 200];
end
end
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rosenboth calculates the Hessian, too, but this example does not use the Hessian.

The unitdisk?2 function correctly calculates the constraint function and its gradient:

function [c,ceq,gc,gceq] = unitdisk2(x)
c = x(1)"2 + x(2)"*2 - 1;
ceq = [ 1;

if nargout > 2
gc = [2*x(1);2*x(2)];
gceq = [I];

end

The unitdiskb function incorrectly calculates gradient of the constraint function:

function [c ceq gc gceq] = unitdiskb(x)
c = x(1)"2 + x(2)"2 - 1;
ceq = [ 1;

if nargout > 2
gc = [x(1);x(2)]; % Gradient incorrect: off by a factor of 2
gceq = [1;

end

Checking Derivatives at the Command Line

1 Set the options to use the interior-point algorithm, gradient of objective and
constraint functions, and the CheckGradients option:

% For reproducibility--CheckGradients randomly perturbs the initial point
rng (0, 'twister');
options = optimoptions(@fmincon, 'Algorithm', 'interior-point',...
'CheckGradients',true, 'SpecifyObjectiveGradient', true, 'SpecifyConstraintGradier
2 Solve the minimization with fmincon using the erroneous unitdiskb constraint
function:

[x fval exitflag output] = fmincon(@rosenboth, ...
[-1;21,01,01,01,01,[1,[]1,@unitdiskb,options);

Derivative Check Information
Objective function derivatives:

Maximum relative difference between user-supplied
and finite-difference derivatives = 1.84768e-008.
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Nonlinear inequality constraint derivatives:

Maximum relative difference between user-supplied

and finite-difference derivatives = 1.

User-supplied constraint derivative element (2,1): 1.99838
Finite-difference constraint derivative element (2,1): 3.99675

Error using validateFirstDerivatives

Derivative Check failed:

User-supplied and forward finite-difference derivatives
do not match within 1le-006 relative tolerance.

Error in fmincon at 805
validateFirstDerivatives(funfcn, confcn, X,

The constraint function does not match the calculated gradient, encouraging you to
check the function for an error.

3 Replace the unitdiskb constraint function with unitdisk?2 and run the
minimization again:

[x fval exitflag output] = fmincon(@rosenboth, ...
[-1;21,01,01,01,01,[1,[1,@unitdisk2,options);

Derivative Check Information

Objective function derivatives:
Maximum relative difference between user-supplied
and finite-difference derivatives = 1.28553e-008.

Nonlinear inequality constraint derivatives:
Maximum relative difference between user-supplied
and finite-difference derivatives = 1.46443e-008.

Derivative Check successfully passed.

Local minimum found that satisfies the constraints...

Checking Derivatives with the Optimization App

Note The Optimization app warns that it will be removed in a future release.
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To set up the example using correct derivative functions, but starting from [0 O], using

the Optimization app:

1 Launch the Optimization app by entering optimtool at the command line.
2 Set the Problem Setup and Results pane to match the following figure:

Problem Setup and Results

Solver: fmincon - Constrained nonlinear minimization

Algorithm: | Interior point
Problem

Objective function: | @rosenboth
Derrvatives:  Gradient supplied

Start point: [0o]

Constraints:

Linear inequalities: A b
Linear equalities: Aeg: beg:
Bounds: Lower: Upper

Monlinear constraint function: | @unitdisk?

Derivatives: | Gradient supplied

3 Set the Options pane to match the following figure:
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[ =l User-supplied derivatives

Validate user-supplied derivatives

Hessian sparsity pattern: @) Use default: sparse{ones(numberOfVariables))
Specify:

Hessian multiply function: @ Use default: No multiply function

Specify:

=l Approximated derivatives

Finite differences f(x + r*x) - fx)

Type: :forwa rd differences > |

Relative perturbation vector i @ Use default: sqri(eps)*ones(numberOfVariables,1)
() Specify:

Minimum perturbation |r*x): @ Use default: 0
() Specify:

Maximum perturbation |r*x|: @ Use default: Inf
() Specify:

[] Evaluate in parallel

4 Press the Start button under Run solver and view results.

The output screen displays
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Pause Stop
Current teration; Clear Results

Optimization running.

Error running optimization.

Derivative Check failed,

IIser-supplied and forward finite-difference derivatives do not match within

1e-006 relative tolerance,

The forward finite difference approximation is inaccurate enough near [0 0] that

the derivative check fails.
5 To use the more accurate central differences, select central differences in the

Approximated derivatives > Type pane:

=l Approximated derivatives

Finite differences f(x + r*x) - f(x - r_*x]
Type: icentral differences |-,
: Lag”

Relative perturbation vector: @ Use default: eps®(1/3)*ones(numberOfVariables,1)

-

1 {nnrif—\ n
6 Click Run solver and view results > Clear Results, then Start. This time the

derivative check is successful:
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Pause Stop
Current iteration: |24 Clear Results

Optimization running.
Objective function value: 0,0456748247573765
Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the default value of the function tolerance,
and constraints are satisfied to within the default value of the constraint
tolerance.

The derivative check also succeeds when you select the initial point [-1 2], or most
random points.
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Current Point and Function Value

The current point and function value are the first two outputs of all Optimization Toolbox
solvers.

» The current point is the final point in the solver iterations. It is the best point the
solver found in its run.

* Ifyou call a solver without assigning a value to the output, the default output, ans,
is the current point.
* The function value is the value of the objective function at the current point.

The function value for least-squares solvers is the sum of squares, also known as
the residual norm.

+ fgoalattain, fminimax, and fsolve return a vector function value.
* Sometimes fval or Fval denotes function value.
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Exit Flags and Exit Messages

In this section...

“Exit Flags” on page 3-3

“Exit Messages” on page 3-4
“Enhanced Exit Messages” on page 3-5
“Exit Message Options” on page 3-8

Exit Flags

When an optimization solver completes its task, it sets an exit flag. An exit flag is an
integer that is a code for the reason the solver halted its iterations. In general:

» Positive exit flags correspond to successful outcomes.

* Negative exit flags correspond to unsuccessful outcomes.

* The zero exit flag corresponds to the solver being halted by exceeding an iteration
limit or limit on the number of function evaluations (see “Iterations and Function
Counts” on page 3-10, and also see “Tolerances and Stopping Criteria” on page 2-78).

A table of solver outputs in the solver's function reference section lists the meaning of
each solver's exit flags.

Note Exit flags are not infallible guides to the quality of a solution. Many other factors,
such as tolerance settings, can affect whether a solution is satisfactory to you. You are
responsible for deciding whether a solver returns a satisfactory answer. Sometimes a
negative exit flag does not correspond to a “bad” solution. Similarly, sometimes a positive
exit flag does not correspond to a “good” solution.

You obtain an exit flag by calling a solver with the exitflag syntax. This syntax depends
on the solver. For details, see the solver function reference pages. For example, for
fsolve, the calling syntax to obtain an exit flag is

[x,fval,exitflag] = fsolve(...)

The following example uses this syntax. Suppose you want to solve the system of
nonlinear equations
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2% —x9 =e 1

—x; + 209 =€ 2.

Write these equations as an anonymous function that gives a zero vector at a solution:

myfcn = @(x)[2*x(1) - x(2) - exp(-x(1));
-x(1) + 2*x(2) - exp(-x(2))1;

Call fsolve with the exitflag syntax at the initial point [-5 -5]:

[xfinal fval exitflag] = fsolve(myfcn,[-5 -5])

Equation solved.

fsolve completed because the vector of function values is near
zero as measured by the default value of the function tolerance,

and the problem appears regular as measured by the gradient.

xfinal =
0.5671 0.5671

fval =
1.0e-006 *
-0.4059
-0.4059

exitflag =
1

In the table for fsolve exitflag, you find that an exit flag value 1 means “Function

converged to a solution X.” In other words, fsolve reports myfcn is nearly zero at
x=1[0.5671 0.5671].

Exit Messages

Each solver issues a message to the MATLAB command window at the end of its
iterations. This message explains briefly why the solver halted. The message might give
more detail than the exit flag.

Many examples in this documentation show exit messages. For example, see “Minimize
Rosenbrock's Function at the Command Line” on page 1-11, or “Step 3: Invoke fminunc
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using the options.” on page 6-13. The example in the previous section, “Exit Flags” on
page 3-3, shows the following exit message:

Equation solved.

fsolve completed because the vector of function values is near
zero as measured by the default value of the function tolerance,
and the problem appears regular as measured by the gradient.

This message is more informative than the exit flag. The message indicates that the
gradient is relevant. The message also states that the function tolerance controls how
near 0 the vector of function values must be for fsolve to regard the solution as
completed.

Enhanced Exit Messages

Some solvers have exit messages that contain links for more information. There are two
types of links:

* Links on words or phrases. If you click such a link, a window opens that displays a
definition of the term, or gives other information. The new window can contain links to
the Help browser documentation for more detailed information.

* Alink as the last line of the display saying <stopping criteria details>. If you
click this link, MATLAB displays more detail about the reason the solver halted.

The fminunc solver has enhanced exit messages:

opts = optimoptions(@fminunc, 'Algorithm', 'quasi-newton'); % 'trust-region' needs gradi
[xfinal fval exitflag] = fminunc(@sin,0,opts)

This yields the following results:
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Local minimum found.

Optimization completed becauss the size of the gradient is less than

the default wvalue of the function tolerance.

<stopping criteria details>

xfinal =

-1.5708

fval =

-1.0000

exitflag =

Each of the underlined words or phrases contains a link that provides more information.

The <stopping criteria details> link prints the following to the MATLAB
command line:

Optimization completed: The first-order optimality measure, 0.000000e+000, is less
than the default value of options.OptimalityTolerance = 1.000000e-006.

Optimization Metric User Options
relative norm(gradient) = 0.00e+000 OptimalityTolerance = 1le-006 (default)

The other links bring up a help window with term definitions. For example, clicking
the Local minimum found link opens the following window:
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' B’
4\ Local Minimum Found ﬁ

-

Local Minimum Found

The solver located a point that seems to be a focal minimum, since
the first-order optimality measure is less than the TolFun tolerance.

For suggestions on how to proceed, see When the Solver Succeeds

Definitions
F local minimum

F first-order optimality measure

F TolFun

F tolerance

L5

A

Clicking the first-order optimality measure expander link brings up the
definition of first-order optimality measure for fminunc:
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' B’
4\ Local Minimum Found @

Local Minimum Found

The solver located a point that seems to be a focal minimum, since
the first-order optimality measure is less than the TolFun tolerance.

For suggestions on how to proceed, see When the Solver Succeeds

Definitions
local minimum

first-order aptimality measure

The first-order optimality measure is the maximum of the absolute
value ofthe components of the gradient vector (also known as the
infinity norm of the gradient). This should be zero at a minimizing
paint.

For more infarmation, see First-Order Qptimality Measure.
TalFun

tolerance

L% A

The expander link is a way to obtain more information in the same window. Clicking
the first-order optimality measure expander link again closes the definition.

* The other links open the Help Viewer.

Exit Message Options

Set the Display option to control the appearance of both exit messages and iterative
display. For more information, see “Iterative Display” on page 3-16. The following table
shows the effect of the various settings of the Display option.
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Value of the Display Option Output to Command Window
Exit message Iterative Display

'none’', or the synonymous 'off' None None

'final' (default for most solvers) Default None
'final-detailed' Detailed None

"iter!' Default Yes
'iter-detailed' Detailed Yes

"‘notify’ Default only if exitflag < 0 None
'notify-detailed' Detailed only if exitflag <0 None

For example,

opts = optimoptions(@fminunc, 'Display', 'iter-detailed', 'Algorithm', 'quasi-newton');
[xfinal fval] = fminunc(@cos,1,opts);

yields the following display:

>> opts = optimoptions (Bfminunc, 'Display’, "iter-detailed', "Algorithm', 'guasi-newton');
[®final fwval] = fminunc (Ecos,l1l,opts);
First-order

Iteration Func-count fix) Step-=ize optimalitcy

o] 2 0.540302 0.841

1 & -0.5990628 2.38223 0.137

2 10 -1 0.351894 0.000328

3 12 -1 1 1.03e-08&

Cptimization completed: The first—-order optimality measure, 5.602276e-07, is less

than options.TolFun = 1.000000e-06.

Cprimization Metric Cprions
relative norm{gradient) = 5.60e-07 TolFun = le-06 [default)
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Iterations and Function Counts

3-10

In general, Optimization Toolbox solvers iterate to find an optimum. This means a solver
begins at an initial value x,, performs some intermediate calculations that eventually lead
to a new point x;, and then repeats the process to find successive approximations x,, xs, ...
of the local minimum. Processing stops after some number of iterations k.

At any step, intermediate calculations may involve evaluating the objective function and
constraints, if any, at points near the current iterate x;. For example, the solver may
estimate a gradient by finite differences. At each of these nearby points, the function
count (F-count) is increased by one.

» If there are no constraints, the F- count reports the total number of objective function
evaluations.

» If there are constraints, the F-count reports only the number of points where
function evaluations took place, not the total number of evaluations of constraint
functions.

» If there are many constraints, the F-count can be significantly less than the total
number of function evaluations.

F-count is a header in the iterative display for many solvers. For an example, see
“Interpret the Result” on page 1-12.

The F-count appears in the output structure as output. funcCount. This enables you
to access the evaluation count programmatically. For more information on output
structures, see “Output Structures” on page 3-25.

Sometimes a solver attempts a step, and rejects the attempt. The trust-region,
trust-region-reflective, and trust-region-dogleg algorithms count these
failed attempts as iterations, and report the (unchanged) result in the iterative display.
The interior-point, active-set, and levenberg-marquardt algorithms do not
count such an attempt as an iteration, and do not report the attempt in the iterative
display. All attempted steps increase the F-count, regardless of the algorithm.
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First-Order Optimality Measure

In this section...

“What Is First-Order Optimality Measure?” on page 3-11
“Stopping Rules Related to First-Order Optimality” on page 3-11
“Unconstrained Optimality” on page 3-12

“Constrained Optimality Theory” on page 3-12

“Constrained Optimality in Solver Form” on page 3-14

What Is First-Order Optimality Measure?

First-order optimality is a measure of how close a point x is to optimal. Most Optimization
Toolbox solvers use this measure, though it has different definitions for different
algorithms. First-order optimality is a necessary condition, but it is not a sufficient
condition. In other words:

* The first-order optimality measure must be zero at a minimum.
* A point with first-order optimality equal to zero is not necessarily a minimum.

For general information about first-order optimality, see Nocedal and Wright [31]. For
specifics about the first-order optimality measures for Optimization Toolbox solvers, see
“Unconstrained Optimality” on page 3-12, “Constrained Optimality Theory” on page 3-
12, and “Constrained Optimality in Solver Form” on page 3-14.

Stopping Rules Related to First-Order Optimality

The OptimalityTolerance tolerance relates to the first-order optimality measure.
Typically, if the first-order optimality measure is less than OptimalityTolerance,
solver iterations end.

Some solvers or algorithms use relative first-order optimality as a stopping criterion.
Solver iterations end if the first-order optimality measure is less than u times
OptimalityTolerance, where p is either:

* The infinity norm (maximum) of the gradient of the objective function at x0

* The infinity norm (maximum) of inputs to the solver, such as f or b in linprog or H in
quadprog
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A relative measure attempts to account for the scale of a problem. Multiplying an
objective function by a very large or small number does not change the stopping condition
for a relative stopping criterion, but does change it for an unscaled one.

Solvers with enhanced exit messages on page 3-5 state, in the stopping criteria details,
when they use relative first-order optimality.

Unconstrained Optimality
For a smooth unconstrained problem,

min f(x),

the first-order optimality measure is the infinity norm (meaning maximum absolute value)
of Vf(x), which is:

first-order optimality measure = max‘(Vf(x))i‘ =||Vf @), -
14

This measure of optimality is based on the familiar condition for a smooth function to
achieve a minimum: its gradient must be zero. For unconstrained problems, when the
first-order optimality measure is nearly zero, the objective function has gradient nearly
zero, so the objective function could be near a minimum. If the first-order optimality
measure is not small, the objective function is not minimal.

Constrained Optimality Theory

This section summarizes the theory behind the definition of first-order optimality measure
for constrained problems. The definition as used in Optimization Toolbox functions is in
“Constrained Optimality in Solver Form” on page 3-14.

For a smooth constrained problem, let g and h be vector functions representing all
inequality and equality constraints respectively (meaning bound, linear, and nonlinear
constraints):

min f(x) subject to g(x) <0, A(x) =0.
X

The meaning of first-order optimality in this case is more complex than for unconstrained
problems. The definition is based on the Karush-Kuhn-Tucker (KKT) conditions. The KKT
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conditions are analogous to the condition that the gradient must be zero at a minimum,
modified to take constraints into account. The difference is that the KKT conditions hold
for constrained problems.

The KKT conditions use the auxiliary Lagrangian function:
L, 2) = f0) + Y Agigi () + Y A iy (). 3-1)

The vector A, which is the concatenation of 4, and 4, is the Lagrange multiplier vector.
Its length is the total number of constraints.

The KKT conditions are:

vV, L(x, 1) =0, (3-2)
8x) <0,
h(x) =0,
Ag; 20.

85l (3_4)

Solvers do not use the three expressions in “Equation 3-4” in the calculation of optimality
measure.

The optimality measure associated with “Equation 3-2” is

[V L, A = |[VF @)+ A Vg () + 3 Ay Yy, ()| (3:5)
The optimality measure associated with “Equation 3-3” is
|2gg@), 36)

where the norm in “Equation 3-6” means infinity norm (maximum) of the vector Ag,i gi(x) .

The combined optimality measure is the maximum of the values calculated in
“Equation 3-5” and “Equation 3-6”. Solvers that accept nonlinear constraint functions
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report constraint violations g(x) > 0 or |h(x)| > 0 as ConstraintTolerance violations.
See “Tolerances and Stopping Criteria” on page 2-78.

Constrained Optimality in Solver Form

Most constrained toolbox solvers separate their calculation of first-order optimality
measure into bounds, linear functions, and nonlinear functions. The measure is the
maximum of the following two norms, which correspond to “Equation 3-5” and
“Equation 3-6":

|V, Lix, 2

| = “Vf(x) +AT;{‘ineqlin + AeqT;teqlin

+Z A‘ineqnonlin,ivci (x) + z )’eqnonlin,ivceqi (x)" ’ (3_7)

li - xi|llower,i’|xi - uiu‘upper,i"(A‘x - b)i| ﬂ‘ineqlin,i’|ci (x)M‘ineqnonlin,i >

(3-8)

where the norm of the vectors in “Equation 3-7” and “Equation 3-8” is the infinity norm
(maximum). The subscripts on the Lagrange multipliers correspond to solver Lagrange
multiplier structures. See “Lagrange Multiplier Structures” on page 3-26. The
summations in “Equation 3-7” range over all constraints. If a bound is +Inf, that term is
not constrained, so it is not part of the summation.

Linear Equalities Only

For some large-scale problems with only linear equalities, the first-order optimality
measure is the infinity norm of the projected gradient. In other words, the first-order
optimality measure is the size of the gradient projected onto the null space of Aeq.

Bounded Least-Squares and Trust-Region-Reflective Solvers

For least-squares solvers and trust-region-reflective algorithms, in problems with bounds
alone, the first-order optimality measure is the maximum over i of |v;*g;|. Here g; is the ith
component of the gradient, x is the current point, and

12

b= |x; —=b;| if the negative gradient points toward bound b;
1 otherwise.
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If x; is at a bound, v; is zero. If x; is not at a bound, then at a minimizing point the gradient
g; should be zero. Therefore the first-order optimality measure should be zero at a
minimizing point.
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Iterative Display

In this section...

“Introduction” on page 3-16
“Common Headings” on page 3-17
“Function-Specific Headings” on page 3-17

Introduction

Iterative display is a table of statistics describing the calculations in each iteration of a
solver. The statistics depend on both the solver and the solver algorithm. For more
information about iterations, see “Iterations and Function Counts” on page 3-10. The
table appears in the MATLAB Command Window when you run solvers with appropriate
options.

Obtain iterative display by using optimoptions to create options with the Display
option setto 'iter' or 'iter-detailed'. For example:

options = optimoptions(@fminunc, 'Display’', 'iter', 'Algorithm', 'quasi-newton');
[x fval exitflag output] = fminunc(@sin,0,options);

First-order

Iteration Func-count f(x) Step-size optimality
0 2 0 1
1 4 -0.841471 1 0.54
2 8 -1 0.484797 0.000993
3 10 -1 1 5.62e-005
4 12 -1 1 0

Local minimum found.

Optimization completed because the size of the gradient
is less than the default value of the function tolerance.

You can also obtain iterative display by using the Optimization app. Select Display to

command window > Level of display > iterative or iterative with detailed
message.
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= Display to command window

Level of display: iiterative

[~
Ly’

Show diagnostics

Iterative display is available for all solvers except:

* 1lsqglin 'trust-region-reflective' algorithm

* lsgnonneg

* quadprog 'trust-region-reflective' algorithm

Common Headings

The following table lists some common headings of iterative display.

Heading Information Displayed

f(x) or Fval Current objective function value. For fsolve, the square of
the norm of the function value vector.

First-order First-order optimality measure (see “First-Order Optimality

optimality Measure” on page 3-11).

Func-count or F-count Number of function evaluations; see “Iterations and
Function Counts” on page 3-10.

Iterationor Iter Iteration number; see “Iterations and Function Counts” on
page 3-10.
Norm of step Size of the current step (size is the Euclidean norm, or 2-

norm). For the 'trust-region' or 'trust-region-
reflective' algorithms, when there are constraints Norm
of step is the norm of D*s. Here s is the step, and D is a
diagonal scaling matrix described in the algorithm
description, trust-region subproblem section.

Function-Specific Headings

The following sections describe headings of iterative display whose meaning is specific to
the optimization function you are using:
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“fgoalattain, fmincon, fminimax, and fseminf” on page 3-18
“fminbnd and fzero” on page 3-19

“fminsearch” on page 3-20

“fminunc” on page 3-21

“fsolve” on page 3-21

“intlinprog” on page 3-21

“linprog” on page 3-22

“Isqlin” on page 3-23

“Isgqnonlin and Isqcurvefit” on page 3-23

“quadprog” on page 3-24

fgoalattain, fmincon, fminimax, and fseminf

The following table describes the headings specific to fgoalattain, fmincon,
fminimax, and fseminf.

fgoalattain, fmincon, Information Displayed

fminimax, or fseminf

Heading

Attainment factor Value of the attainment factor for fgoalattain.

CG-iterations Number of conjugate gradient iterations taken in the current
iteration (see “Preconditioned Conjugate Gradient Method” on
page 6-23).

Directional Gradient of the objective function along the search direction.

derivative

Feasibility Maximum constraint violation, where satisfied inequality
constraints count as 0.

Line search Multiplicative factor that scales the search direction (see

steplength “Equation 6-45").

Max constraint Maximum violation among all constraints, both internally
constructed and user-provided; can be negative when no
constraint is binding.

Objective value Objective function value of the nonlinear programming
reformulation of the minimax problem for fminimax.
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fgoalattain, fmincon,
fminimax, or fseminf
Heading

Information Displayed

Procedure

Hessian update procedures:

Infeasible start point
Hessian not updated
Hessian modified
Hessian modified twice

For more information, see “Updating the Hessian Matrix” on
page 6-30.

QP subproblem procedures:

dependent — There are dependent (redundant) equality
constraints that the solver detected and removed.

Infeasible — The QP subproblem with linearized
constraints is infeasible.

Overly constrained — The QP subproblem with
linearized constraints is infeasible.

Unbounded — The QP subproblem is feasible with large
negative curvature.

I1l-posed — The QP subproblem search direction is too
small.

Unreliable — The QP subproblem seems to be ill-
conditioned.

Steplength

Multiplicative factor that scales the search direction (see
“Equation 6-45").

Trust-region radius

Current trust-region radius.

fminbnd and fzero

The following table describes the headings specific to fminbnd and fzero.
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fminbnd or fzero |Information Displayed
Heading
Procedure Procedures for fminbnd:
* ipitial
* golden (golden section search)
* parabolic (parabolic interpolation)
Procedures for fzero:
* initial (initial point)
* search (search for an interval containing a zero)
* bisection
* interpolation (linear interpolation or inverse quadratic
interpolation)
X Current point for the algorithm
fminsearch

The following table describes the headings specific to fminsearch.

fminsearch Information Displayed

Heading

min f(x) Minimum function value in the current simplex.

Procedure Simplex procedure at the current iteration. Procedures include:

e initial simplex

* expand
* reflect
e shrink

* contract inside
e contract outside

For details, see “fminsearch Algorithm” on page 6-11.
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fminunc

The following table describes the headings specific to fminunc.

fminunc Heading

Information Displayed

CG-iterations

Number of conjugate gradient iterations taken in the current
iteration (see “Preconditioned Conjugate Gradient Method” on
page 6-23)

Line search
steplength

Multiplicative factor that scales the search direction (see
“Equation 6-11”)

The fminunc 'quasi-newton' algorithm can issue a skipped update message to the
right of the First-order optimality column. This message means that fminunc did
not update its Hessian estimate, because the resulting matrix would not have been

positive definite. The message usually indicates that the objective function is not smooth

at the current point.

fsolve

The following table describes the headings specific to fsolve.

fsolve Heading

Information Displayed

Directional Gradient of the function along the search direction

derivative

Lambda Ay value defined in “Levenberg-Marquardt Method” on page 11-7
Residual Residual (sum of squares) of the function

Trust-region
radius

Current trust-region radius (change in the norm of the trust-region
radius)

intlinprog

The following table describes the headings specific to intlinprog.

intlinprog Heading

Information Displayed

nodes explored

Cumulative number of explored nodes.

total time (s)

Time in seconds since intlinprog started.

num int solution

Number of integer feasible points found.
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intlinprog Heading

Information Displayed

integer fval

Objective function value of the best integer feasible point found.
This is an upper bound for the final objective function value.

relative gap (%)

1006 —a)
p| + 1

b

where

* b is the objective function value of the best integer feasible
point.

* ais the best lower bound on the objective function value.

Note While you specify RelativeGapTolerance as a decimal
number, the iterative display and output. relativegap report
the gap in percentage, meaning 100 times the measured relative
gap. If the exit message refers to the relative gap, this value is the
measured relative gap, not a percentage.

linprog

The following table describes the headings specific to Linprog. Each algorithm has its

own iterative display.

linprog Heading

Information Displayed

Primal Infeas
A*x-b or Primal
Infeas

Primal infeasibility, a measure of the constraint violations, which
should be zero at a solution.

For definitions, see “Predictor-Corrector” on page 8-4
('interior-point') or “Main Algorithm” on page 8-8
('interior-point-legacy') or “Dual-Simplex Algorithm” on
page 8-12.
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linprog Heading

Information Displayed

Dual Infeas A'*y
+z-w-f or Dual
Infeas

Dual infeasibility, a measure of the derivative of the Lagrangian,
which should be zero at a solution.

For the definition of the Lagrangian, see “Predictor-Corrector” on
page 8-4. For the definition of dual infeasibility, see “Predictor-
Corrector” on page 8-4 ('interior-point') or “Main
Algorithm” on page 8-8 (' interior-point-legacy') or
“Dual-Simplex Algorithm” on page 8-12.

Upper Bounds {x}
+s-ub

Upper bound feasibility. {x} means those x with finite upper
bounds. This is the r, residual in “Interior-Point-Legacy Linear
Programming” on page 8-8.

Duality Gap x'*z
+s ' *w

Duality gap (see “Interior-Point-Legacy Linear Programming” on
page 8-8) between the primal objective and the dual objective. s
and w appear in this equation only if there are finite upper bounds.

Total Rel Error

Total relative error, described at the end of “Main Algorithm” on
page 8-8.

Complementarity |A measure of the Lagrange multipliers times distance from the
bounds, which should be zero at a solution. See the r, variable in
“Stopping Conditions” on page 8-7.

Time Time in seconds that 1inprog has been running.

Isqglin

The 1sqlin 'interior-point' iterative display is inherited from the quadprog
iterative display. The relationship between these functions is explained in “Interior-Point

Linear Least Squares”

page 3-24.

on page 11-7. For iterative display details, see “quadprog” on

Isqnonlin and Isqcurvefit

The following table describes the headings specific to Lsgnonlin and lsqcurvefit.
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Isqnonlin or Information Displayed

Isqcurvefit

Heading

Directional Gradient of the function along the search direction

derivative

Lambda A, value defined in “Levenberg-Marquardt Method” on page 11-7
Resnorm Value of the squared 2-norm of the residual at x

Residual Residual vector of the function

quadprog

The following table describes the headings specific to quadprog. Only the 'interior-
point-convex' algorithm has iterative display.

quadprog Heading

Information Displayed

Primal Infeas

Primal infeasibility, defined as max( norm(Aeq*x - beq, inf),
abs(min(0, min(A*x-b))) )

Dual Infeas

Dual infeasibility, defined as norm(H*x + f -
A*lambda ineqlin - Aeg*lambda eqlin, inf)

Complementarity

A measure of the maximum absolute value of the Lagrange
multipliers of inactive inequalities, which should be zero at a
solution. This quantity is g in “Infeasibility Detection” on page 10-

9.
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Output Structures

An output structure contains information on a solver's result. All solvers can return an
output structure. To obtain an output structure, invoke the solver with the output
structure in the calling syntax. For example, to get an output structure from lsqnonlin,
use the syntax

[x,resnorm, residual,exitflag,output] = lsgnonlin(...)

You can also obtain an output structure by running a problem using the Optimization app.
All results exported from Optimization app contain an output structure.

The contents of the output structure are listed in each solver's reference pages. For
example, the output structure returned by 1sqnonlin contains firstorderopt,
iterations, funcCount, cgiterations, stepsize, algorithm, and message. To
access, for example, the message, enter output.message.

Optimization app exports results in a structure. The results structure contains the output
structure. To access, for example, the number of iterations, use the syntax
optimresults.output.iterations.

You can also see the contents of an output structure by double-clicking the output
structure in the MATLAB Workspace pane.
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Lagrange Multiplier Structures

3-26

Constrained optimization involves a set of Lagrange multipliers, as described in “First-
Order Optimality Measure” on page 3-11. Solvers return estimated Lagrange multipliers
in a structure. The structure is called lambda, since the conventional symbol for
Lagrange multipliers is the Greek letter lambda (). The structure separates the
multipliers into the following types, called fields:

* lower, associated with lower bounds

* upper, associated with upper bounds

* eqglin, associated with linear equalities

* 1ineqlin, associated with linear inequalities

* eqgnonlin, associated with nonlinear equalities

* 1ineqgnonlin, associated with nonlinear inequalities

To access, for example, the nonlinear inequality field of a Lagrange multiplier structure,

enter lambda.ingnonlin. To access the third element of the Lagrange multiplier
associated with lower bounds, enter lambda. lower(3).

The content of the Lagrange multiplier structure depends on the solver. For example,
linear programming has no nonlinearities, so it does not have eqnonlin or inegnonlin
fields. Each applicable solver's function reference pages contains a description of its
Lagrange multiplier structure under the heading “Outputs.”



Hessian

Hessian

In this section...

“fminunc Hessian” on page 3-27

“fmincon Hessian” on page 3-28

fminunc Hessian

The Hessian for an unconstrained problem is the matrix of second derivatives of the
objective function f:

O*f
0X;0x '

Hessian Hij =

* Quasi-Newton Algorithm — fminunc returns an estimated Hessian matrix at the
solution. It computes the estimate by finite differences.

* Trust-Region Algorithm — fminunc returns a Hessian matrix at the next-to-last
iterate.

+ Ifyou supply a Hessian in the objective function, fminunc returns this Hessian.

+ Ifyou supply a HessMult function, fminunc returns the Hinfo matrix from the
HessMult function. For more information, see HessMult in the trust-region
section of the fminunc options table.

* Otherwise, fminunc returns an approximation from a sparse finite difference
algorithm on the gradients.

This Hessian is accurate for the next-to-last iterate. However, the next-to-last iterate
might not be close to the final point.

The reason the trust-region algorithm returns the Hessian at the next-to-last point
is for efficiency. fminunc uses the Hessian internally to compute its next step. When
fminunc reaches a stopping condition, it does not need to compute the next step, so
does not compute the Hessian.
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fmincon Hessian

The Hessian for a constrained problem is the Hessian of the Lagrangian. For an objective
function f, nonlinear inequality constraint vector ¢, and nonlinear equality constraint
vector ceq, the Lagrangian is

L :f+Zl,-ci +Z/'cheqj.
i J

The A; are Lagrange multipliers; see “First-Order Optimality Measure” on page 3-11 and
“Lagrange Multiplier Structures” on page 3-26. The Hessian of the Lagrangian is

H=V2L=V2f+Y 4V%¢+Y A;VZceq;.
i J

fmincon has four algorithms, with several options for Hessians, as described in “fmincon
Trust Region Reflective Algorithm” on page 6-21, “fmincon Active Set Algorithm” on
page 6-26, and “fmincon Interior Point Algorithm” on page 6-37. fmincon returns the
following for the Hessian:

* active-set or sqp Algorithm — fmincon returns the Hessian approximation it
computes at the next-to-last iterate. fmincon computes a quasi-Newton
approximation of the Hessian matrix at the solution in the course of its iterations. This
approximation does not, in general, match the true Hessian in every component, but
only in certain subspaces. Therefore the Hessian that fmincon returns can be
inaccurate. For more details of the active-set calculation, see “SQP
Implementation” on page 6-29.

* trust-region-reflective Algorithm — fmincon returns the Hessian it
computes at the next-to-last iterate.
* Ifyou supply a Hessian in the objective function, fmincon returns this Hessian.

* Ifyou supply a HessMult function, fmincon returns the Hinfo matrix from the
HessMult function. For more information, see Trust-Region-Reflective
Algorithm in fmincon options.

* Otherwise, fmincon returns an approximation from a sparse finite difference
algorithm on the gradients.

This Hessian is accurate for the next-to-last iterate. However, the next-to-last iterate
might not be close to the final point.



See Also

The reason the trust-region-reflective algorithm returns the Hessian at the
next-to-last point is for efficiency. fmincon uses the Hessian internally to compute its
next step. When fmincon reaches a stopping condition, it does not need to compute
the next step, so does not compute the Hessian.

+ interior-point Algorithm
+ Ifthe Hessian option is Lbfgs or fin-diff-grads, or if you supply a Hessian
multiply function (HessMult), fmincon returns [] for the Hessian.

+ Ifthe Hessian option is bfgs (the default), fmincon returns a quasi-Newton
approximation to the Hessian at the final point. This Hessian can be inaccurate, as
in the active-set or sqp algorithm Hessian.

o If the Hessian option is user-supplied, fmincon returns the user-supplied
Hessian at the final point.

See Also

More About

. “Including Gradients and Hessians” on page 2-25
. “Hessian as an Input” on page 15-81
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In this section...

“Plot an Optimization During Execution” on page 3-30
“Using a Plot Function” on page 3-30

Plot an Optimization During Execution

You can plot various measures of progress during the execution of a solver. Set the
PlotFcn name-value pair in optimoptions, and specify one or more plotting functions
for the solver to call at each iteration. Pass a function handle or cell array of function
handles.

There are a variety of predefined plot functions available. See:

* The PlotFcn option description in the solver function reference page
* Optimization app > Options > Plot functions

You can also use a custom-written plot function. Write a function file using the same
structure as an output function. For more information on this structure, see “Output
Function” on page 14-36.

Using a Plot Function

This example shows how to use a plot function to view the progress of the fmincon
interior-point algorithm. The problem is taken from the Getting Started “Solve a
Constrained Nonlinear Problem” on page 1-5. The first part of the example shows how to
run the optimization using the Optimization app. The second part shows how to run the
optimization from the command line.

Note The Optimization app warns that it will be removed in a future release.

Running the Optimization Using the Optimization App
1 Write the nonlinear objective and constraint functions, including the derivatives:

function [f g H] = rosenboth(x)
% ROSENBOTH returns both the value y of Rosenbrock's function
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[}

% and also the value g of its gradient and H the Hessian.
f = 100%(x(2) - x(1)72)"2 + (1-x(1))"2

if nargout > 1
g = [-400*(x(2)-x(1)"2)*x(1)-2*(1-x(1));
200%(x(2)-x(1)"2) 1;

if nargout > 2
H = [1200*x(1)"2-400*x(2)+2, -400*x(1);
-400*x(1), 200];
end
end

Save this file as rosenboth.m.

function [c,ceq,gc,gceq]l = unitdisk2(x)
% UNITDISK2 returns the value of the constraint
% function for the disk of radius 1 centered at
% [0 0]. It also returns the gradient.

X

(1)~2 + x(2)7°2 - 1;
[ 1;

.QII

if nargout > 2
= [2*x(1);2*x(2)];
gceq = [1;
end

Save this file as unitdisk2.m.

Start the Optimization app by entering optimtool at the command line.
Set up the optimization:

* Choose the fmincon solver.

* Choose the Interior point algorithm.

* Set the objective function to @rosenboth.

* Choose Gradient supplied for the objective function derivative.

* Set the start point to [0 0O].

* Set the nonlinear constraint function to @Qunitdisk?2.

* Choose Gradient supplied for the nonlinear constraint derivatives.

Your Problem Setup and Results panel should match the following figure.
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Problem Setup and Results

Solver: frincon - Constrained nenlinear minimization v:
Algorithm: :Interiurpuint v:
Problem

Objective function: | @rosenboth -

Derrvatives: Gradient supplied v:

Start point: [0o]

Constraints:

Linear inequalities: A b

Linear equalities: Aeg: beg:

Bounds: Lower: Upper

Monlinear constraint function: | @unitdisk?
Derivatives: | Gradient supplied x|

4 Choose three plot functions in the Options pane: Current point, Function value,
and First order optimality.

[ =l Plot functions ]

Current point [] Function count Function value
[ Max constraint [] Current step First order optimality

[] Custom function:

5 Click the Start button under Run solver and view results.
6 The output appears as follows in the Optimization app.
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Run salver and view results

Start Pause Stop

Current iteration: |24 Clear Results

Optimization running.
Ohjective function value: 0,0456743247573765
Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the default value of the function tolerance,
and constraints are satisfied to within the default value of the constraint
tolerance.

AW

Final point:

1a 2
0.786|

0.618

In addition, the following three plots appear in a separate window.
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First-order optimality
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* The “Current Point” plot graphically shows the minimizer [0.786,0.618], which is
reported as the Final point in the Run solver and view results pane. This plot
updates at each iteration, showing the intermediate iterates.

* The “Current Function Value” plot shows the objective function value at all iterations.
This graph is nearly monotone, showing fmincon reduces the objective function at
almost every iteration.

* The “First-order Optimality” plot shows the first-order optimality measure at all
iterations.

Running the Optimization from the Command Line

1 Write the nonlinear objective and constraint functions, including the derivatives, as
shown in “Running the Optimization Using the Optimization App” on page 3-30.
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Create an options structure that includes calling the three plot functions:

options = optimoptions(@fmincon, 'Algorithm', 'interior-point',...
'SpecifyObjectiveGradient', true, 'SpecifyConstraintGradient', true, 'PlotFcn', {@optin
@optimplotfval,@optimplotfirstorderopt});
Call fmincon:

x = fmincon(@rosenboth, [0 ©],[1,[1,[1,[1,[1,[1,...
@unitdisk2,options)
fmincon gives the following output:

Local minimum found that satisfies the constraints.
Optimization completed because the objective function is
non-decreasing in feasible directions, to within the default
value of the function tolerance, and constraints are satisfied
to within the default value of the constraint tolerance.

X =
0.7864 0.6177

fmincon also displays the three plot functions, shown at the end of “Running the
Optimization Using the Optimization App” on page 3-30.
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In this section...

“What Is an Output Function?” on page 3-36

“Example: Using Output Functions” on page 3-36

What Is an Output Function?

For some problems, you might want output from an optimization algorithm at each
iteration. For example, you might want to find the sequence of points that the algorithm
computes and plot those points. To do this, create an output function that the optimization
function calls at each iteration. See “Output Function” on page 14-36 for details and
syntax.

Generally, the solvers that can employ an output function are the ones that can take
nonlinear functions as inputs. You can determine which solvers can have an output
function by looking in the Options section of function reference pages, or by checking
whether the Output function option is available in the Optimization app for a solver.

Example: Using Output Functions

* “What the Example Contains” on page 3-36

* “Writing the Output Function” on page 3-37

* “Writing the Example Function File” on page 3-38
* “Running the Example” on page 3-40

What the Example Contains

The following example continues the one in “Nonlinear Inequality Constraints” on page 6-
80, which calls the function fmincon at the command line to solve a nonlinear,
constrained optimization problem. The example in this section uses a function file to call
fmincon. The file also contains all the functions needed for the example, including:

* The objective function

* The constraint function

* An output function that records the history of points computed by the algorithm for
fmincon. At each iteration of the algorithm for fmincon, the output function:
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* Plots the current point computed by the algorithm.

* Stores the point and its corresponding objective function value in a variable called
history, and stores the current search direction in a variable called searchdir.
The search direction is a vector that points in the direction from the current point
to the next one.

The code for the file is here: “Writing the Example Function File” on page 3-38.
Writing the Output Function

You specify the output function in options, such as
options = optimoptions(@fmincon, 'OutputFcn',@outfun)

where outfun is the name of the output function. When you call an optimization function
with options as an input, the optimization function calls outfun at each iteration of its
algorithm.

In general, outfun can be any MATLAB function, but in this example, it is a nested
function of the function file described in “Writing the Example Function File” on page 3-
38. The following code defines the output function:

function stop = outfun(x,optimValues,state)
stop = false;

switch state
case 'init'
hold on
case 'iter'’
% Concatenate current point and objective function
% value with history. x must be a row vector.
history.fval = [history.fval; optimValues.fvall;
history.x = [history.x; x];
% Concatenate current search direction with
% searchdir.
searchdir = [searchdir;...
optimValues.searchdirection'];
plot(x(1),x(2),'0");
% Label points with iteration number.
% Add .15 to x(1) to separate label from plotted 'o'
text(x(1)+.15,x(2),num2str(optimValues.iteration));
case 'done’
hold off

3-37



3 Examining Results

3-38

otherwise
end
end

See “Using Handles to Store Function Parameters” (MATLAB) for more information about
nested functions.

The arguments that the optimization function passes to outfun are:

* X — The point computed by the algorithm at the current iteration
* optimValues — Structure containing data from the current iteration

The example uses the following fields of optimValues:

+ optimValues.iteration — Number of the current iteration
* optimValues.fval — Current objective function value
* optimValues.searchdirection — Current search direction
* state — The current state of the algorithm ('init"', 'interrupt’, 'iter’, or
‘done')
For more information about these arguments, see “Output Function” on page 14-36.
Writing the Example Function File

To create the function file for this example:

Open a new file in the MATLAB Editor.
2 Copy and paste the following code into the file:

function [history,searchdir] = runfmincon

% Set up shared variables with OUTFUN
history.x = [];

history.fval = [];

searchdir = [];

% call optimization

x0 = [-11];

options = optimoptions(@fmincon, 'OutputFcn',@outfun,...
'Display', 'iter', 'Algorithm', 'active-set');

xsol = fmincon(@objfun,x0,[1,[]1,[1,[],[1,[],@confun,options);
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function stop = outfun(x,optimValues,state)
stop = false;

switch state

case 'init'

hold on

case 'iter'
Concatenate current point and objective function
value with history. x must be a row vector.
history.fval = [history.fval; optimValues.fval];
history.x = [history.x; x];
Concatenate current search direction with
searchdir.
searchdir = [searchdir;...

optimValues.searchdirection'];
plot(x(1),x(2),'0");
Label points with iteration number and add title.
Add .15 to x(1) to separate label from plotted 'o'
text(x(1)+.15,x(2),...
num2str(optimValues.iteration));

title('Sequence of Points Computed by fmincon');

case 'done'’

hold off

otherwise

end

o o

o o

o o°

end

function f = objfun(x)
f = exp(x(1))*(4*x(1)"2 + 2*¥x(2)"2 + 4*x(1)*x(2) +...
2*¥x(2) + 1);
end

function [c, ceq] = confun(x)
% Nonlinear inequality constraints
c = [1.5 + x(1)*x(2) - x(1) - x(2);

-x(1)*x(2) - 10];

% Nonlinear equality constraints
ceq = [];

end

end

3 Save the file as runfmincon.m in a folder on the MATLAB path.
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Running the Example

To run the example, enter:

[history searchdir] = runfmincon;

This displays the following iterative output in the Command Window.

Max Line search Directional First-order

Iter F-count f(x) constraint steplength derivative optimality Procedure
0 3 1.8394 0.5 Infeasible
1 6 1.85127 -0.09197 1 0.109 0.778 start point
2 9 0.300167 9.33 1 -0.117 0.313 Hessian modified
3 12 0.529835 0.9209 1 0.12 0.232  twice
4 16 0.186965 -1.517 0.5 -0.224 0.13
5 19 0.0729085 0.3313 1 -0.121 0.054
6 22 0.0353323 -0.03303 1 -0.0542 0.0271
7 25 0.0235566 0.003184 1 -0.0271 0.00587
8 28 0.0235504 9.032e-008 1 -0.0146 8.51e-007

Local minimum found that satisfies the constraints.
Optimization completed because the objective function is non-decreasing in
feasible directions, to within the default value of the function tolerance,
and constraints are satisfied to within the default value of the constraint tolerance.
Active inequalities (to within options.ConstraintTolerance = 1e-006):
lower upper ineqlin inegnonlin

1
2

The output history is a structure that contains two fields:
history =
struct with fields:

X: [9x2 double]
fval: [9x1 double]

The fval field contains the objective function values corresponding to the sequence of
points computed by fmincon:

history.fval
ans =
1.8394
1.8513
0.3002

0.5298
0.1870
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0.
0.
0.
0.

0729
0353
0236
0236

These are the same values displayed in the iterative output in the column with header

f(x).

The x field of history contains the sequence of points computed by the algorithm:

history.x

ans =

-1
-1

-4

.0000
.3679
-5.
.8000
-6.
-8.
-9.
-9.
-9.

5708

7054
0679
0230
5471
5474

RFHREREERNWR R

.0000
.2500
.4699
.2752
.2018
.0186
.0532
.0471
.0474

This example displays a plot of this sequence of points, in which each point is labeled by
its iteration number.
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Sequence of Points Computed by fmincon
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The optimal point occurs at the eighth iteration. Note that the last two points in the
sequence are so close that they overlap.

The second output argument, searchdir, contains the search directions for fmincon at
each iteration. The search direction is a vector pointing from the point computed at the
current iteration to the point computed at the next iteration:

searchdir =

-0.3679 0.2500
-4.2029 2.2199
0.7708 -1.1947
-3.8108 -2.0268
-1.3625 -0.2432
-0.9552 0.0346
-0.5241 -0.0061
-0.0003 0.0003



Steps to Take After Running a
Solver

* “Overview of Next Steps” on page 4-2

*  “When the Solver Fails” on page 4-3

* “Solver Takes Too Long” on page 4-11

*  “When the Solver Might Have Succeeded” on page 4-15

* “When the Solver Succeeds” on page 4-22

* “Local vs. Global Optima” on page 4-27

* “Optimizing a Simulation or Ordinary Differential Equation” on page 4-32
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Overview of Next Steps
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This topic addresses questions you might have after running a solver. The questions
include:

* Is the answer reliable?

* What can you do if the solver fails?

* Is the minimum smaller than all other minima, or only smaller than nearby minima?
(“Local vs. Global Optima” on page 4-27)

*  What can you do if the solver takes too long?
The list of questions is not exhaustive. It covers common or basic problems.

You can access relevant answers from many solvers' default exit message. The first line of
the exit message contains a link to a brief description of the result. This description
contains a link leading to documentation.

See Also

Related Examples

. “When the Solver Fails” on page 4-3

. “Solver Takes Too Long” on page 4-11

. “When the Solver Might Have Succeeded” on page 4-15
. “When the Solver Succeeds” on page 4-22
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When the Solver Fails

In this section...

“Too Many Iterations or Function Evaluations” on page 4-3
“Converged to an Infeasible Point” on page 4-7

“Problem Unbounded” on page 4-9

“fsolve Could Not Solve Equation” on page 4-10

Too Many Iterations or Function Evaluations

The solver stopped because it reached a limit on the number of iterations or function
evaluations before it minimized the objective to the requested tolerance. To proceed, try
one or more of the following.

“1. Enable Iterative Display” on page 4-3

“2. Relax Tolerances” on page 4-4

“3. Start the Solver From Different Points” on page 4-4

“4. Check Objective and Constraint Function Definitions” on page 4-5

“5. Center and Scale Your Problem” on page 4-5

“6. Provide Gradient or Jacobian” on page 4-6

“7. Provide Hessian” on page 4-7

1. Enable Iterative Display
Set the Display option to 'iter'. This setting shows the results of the solver iterations.
To enable iterative display:

* Using the Optimization app, choose Level of display to be iterative or iterative
with detailed message.

o At the MATLAB command line, enter
options = optimoptions('solvername','Display', 'iter');
Call the solver using the options structure.

For an example of iterative display, see “Interpret the Result” on page 1-12.
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What to Look For in Iterative Display
* See if the objective function (Fval or f(x) or Resnorm) decreases. Decrease
indicates progress.

* Examine constraint violation (Max constraint) to ensure that it decreases towards
0. Decrease indicates progress.

* See if the first-order optimality decreases towards 0. Decrease indicates progress.

* Seeifthe Trust-region radius decreases to a small value. This decrease indicates
that the objective might not be smooth.

What to Do
» If the solver seemed to progress:

1 SetMaxIterations and/or MaxFunctionEvaluations to values larger than
the defaults. You can see the default values in the Optimization app, or in the
Options table in the solver's function reference pages.

2 Start the solver from its last calculated point.
» If the solver is not progressing, try the other listed suggestions.
2. Relax Tolerances
If StepTolerance or OptimalityTolerance, for example, are too small, the solver
might not recognize when it has reached a minimum; it can make futile iterations

indefinitely.

To change tolerances using the Optimization app, use the Stopping criteria list at the
top of the Options pane.

To change tolerances at the command line, use optimoptions as described in “Set and
Change Options” on page 2-70.

The FiniteDifferenceStepSize option (or DiffMaxChange and DiffMinChange
options) can affect a solver's progress. These options control the step size in finite
differencing for derivative estimation.

3. Start the Solver From Different Points

See Change the Initial Point on page 4-23.
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4. Check Objective and Constraint Function Definitions

For example, check that your objective and nonlinear constraint functions return the
correct values at some points. See Check your Objective and Constraint Functions on
page 4-25. Check that an infeasible point does not cause an error in your functions; see
“Iterations Can Violate Constraints” on page 2-42.

5. Center and Scale Your Problem

Solvers run more reliably when each coordinate has about the same effect on the
objective and constraint functions. Multiply your coordinate directions with appropriate
scalars to equalize the effect of each coordinate. Add appropriate values to certain
coordinates to equalize their size.

Example: Centering and Scaling

Consider minimizing 1e6*x(1)"2 + le-6*x(2)"2:

f = @(x) 1076*x(1)"2 + 10™-6*x(2)"2;

Minimize f using the fminunc 'quasi-newton' algorithm:

opts = optimoptions('fminunc', 'Display’', 'none', 'Algorithm', 'quasi-newton');
x = fminunc(f,[0.5;0.5],0pts)

X =

0
0.5000

The result is incorrect; poor scaling interfered with obtaining a good solution.
Scale the problem. Set
D = diag([le-3,1e3]);

fr = @(y) f(D*y);
y = fminunc(fr, [0.5;0.5], opts)

y =
0
0 % the correct answer

Similarly, poor centering can interfere with a solution.

fc = @(z)fr([z(1)-1e6;z(2)+1e6]); % poor centering
z = fminunc(fc,[.5 .5],o0pts)
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Z =
1.0e+005 *
10.0000 -10.0000 % looks good, but...

z - [le6 -1leb6] % checking how close z is to 1le6
ans =

-0.0071 0.0078 % reveals a distance

fcc = @(w)fc([w(1l)+1leb;w(2)-1e6]); % centered
w = fminunc(fcc,[.5 .5],opts)

w =
0 0 % the correct answer

6. Provide Gradient or Jacobian

If you do not provide gradients or Jacobians, solvers estimate gradients and Jacobians by
finite differences. Therefore, providing these derivatives can save computational time,
and can lead to increased accuracy.

For constrained problems, providing a gradient has another advantage. A solver can
reach a point x such that x is feasible, but finite differences around x always lead to an
infeasible point. In this case, a solver can fail or halt prematurely. Providing a gradient
allows a solver to proceed.

Provide gradients or Jacobians in the files for your objective function and nonlinear
constraint functions. For details of the syntax, see “Writing Scalar Objective Functions”
on page 2-23, “Writing Vector and Matrix Objective Functions” on page 2-34, and
“Nonlinear Constraints” on page 2-48.

To check that your gradient or Jacobian function is correct, use the CheckGradients
option, as described in “Checking Validity of Gradients or Jacobians” on page 2-81.

If you have a Symbolic Math Toolbox license, you can calculate gradients and Hessians
programmatically. For an example, see “Symbolic Math Toolbox Calculates Gradients and
Hessians” on page 6-116.

For examples using gradients and Jacobians, see “Minimization with Gradient and
Hessian” on page 6-15, “Nonlinear Constraints with Gradients” on page 6-82,



When the Solver Fails

“Symbolic Math Toolbox Calculates Gradients and Hessians” on page 6-116, “Nonlinear
Equations with Analytic Jacobian” on page 12-9, and “Nonlinear Equations with
Jacobian” on page 12-14.

7. Provide Hessian
Solvers often run more reliably and with fewer iterations when you supply a Hessian.

The following solvers and algorithms accept Hessians:

* fmincon interior-point. Write the Hessian as a separate function. For an
example, see “fmincon Interior-Point Algorithm with Analytic Hessian” on page 6-85.

* fmincon trust-region-reflective. Give the Hessian as the third output of the
objective function. For an example, see “Minimization with Dense Structured Hessian,
Linear Equalities” on page 6-111.

 fminunc trust-region. Give the Hessian as the third output of the objective
function. For an example, see “Minimization with Gradient and Hessian” on page 6-
15.

If you have a Symbolic Math Toolbox license, you can calculate gradients and Hessians
programmatically. For an example, see “Symbolic Math Toolbox Calculates Gradients and
Hessians” on page 6-116.

Converged to an Infeasible Point

Usually, you get this result because the solver was unable to find a point satisfying all
constraints to within the ConstraintTolerance tolerance. However, the solver might
have located or started at a feasible point, and converged to an infeasible point. If the
solver lost feasibility, see “Solver Lost Feasibility” on page 4-9. If quadprog returns
this result, see “quadprog Converges to an Infeasible Point” on page 4-9

To proceed when the solver found no feasible point, try one or more of the following.
“1. Check Linear Constraints” on page 4-7
“2. Check Nonlinear Constraints” on page 4-8

1. Check Linear Constraints

Try finding a point that satisfies the bounds and linear constraints by solving a linear
programming problem.
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Define a linear programming problem with an objective function that is always zero:

f = zeros(size(x0)); % assumes x0 is the initial point
Solve the linear programming problem to see if there is a feasible point:

xnew = linprog(f,A,b,Aeq,beq,1lb,ub);

If there is a feasible point xnew, use xnew as the initial point and rerun your original
problem.

If there is no feasible point, your problem is not well-formulated. Check the
definitions of your bounds and linear constraints.

2. Check Nonlinear Constraints

After ensuring that your bounds and linear constraints are feasible (contain a point
satisfying all constraints), check your nonlinear constraints.

Set your objective function to zero:
@(x)o

Run your optimization with all constraints and with the zero objective. If you find a
feasible point xnew, set x0@ = xnew and rerun your original problem.

If you do not find a feasible point using a zero objective function, use the zero
objective function with several initial points.

+ Ifyou find a feasible point xnew, set X0 = xnew and rerun your original problem.
* Ifyou do not find a feasible point, try relaxing the constraints, discussed next.

Try relaxing your nonlinear inequality constraints, then tightening them.

1

2

Change the nonlinear constraint function c to return c-A, where A is a positive
number. This change makes your nonlinear constraints easier to satisfy.

Look for a feasible point for the new constraint function, using either your original
objective function or the zero objective function.

1 Ifyou find a feasible point,

a Reduce A

b Look for a feasible point for the new constraint function, starting at the
previously found point.

2 Ifyou do not find a feasible point, try increasing A and looking again.
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If you find no feasible point, your problem might be truly infeasible, meaning that no
solution exists. Check all your constraint definitions again.

Solver Lost Feasibility

If the solver started at a feasible point, but converged to an infeasible point, try the
following techniques.

* Try a different algorithm. The fmincon 'sqp' and 'interior-point' algorithms
are usually the most robust, so try one or both of them first.

* Tighten the bounds. Give the highest 1b and lowest ub vectors that you can. This can
help the solver to maintain feasibility. The fmincon 'sgqp' and 'interior-point'
algorithms obey bounds at every iteration, so tight bounds help throughout the
optimization.

quadprog Converges to an Infeasible Point

Usually, you get this message because the linear constraints are inconsistent, or are
nearly singular. To check whether a feasible point exists, create a linear programming
problem with the same constraints and with a zero objective function vector f. Solve
using the Linprog 'dual-simplex' algorithm:

options = optimoptions('linprog', 'Algorithm', 'dual-simplex');
x = linprog(f,A,b,Aeq,beq,lb,ub,options)

If Linprog finds no feasible point, then your problem is truly infeasible.

If Linprog finds a feasible point, then try a different quadprog algorithm. Alternatively,
change some tolerances such as StepTolerance or ConstraintTolerance and solve
the problem again.

Problem Unbounded

The solver reached a point whose objective function was less than the objective limit
tolerance.

* Your problem might be truly unbounded. In other words, there is a sequence of points
X; with

lim fx) = -0,

and such that all the x; satisfy the problem constraints.

4-9
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Check that your problem is formulated correctly. Solvers try to minimize objective
functions; if you want a maximum, change your objective function to its negative. For
an example, see “Maximizing an Objective” on page 2-39.

Try scaling or centering your problem. See Center and Scale Your Problem on page 4-
5.

Relax the objective limit tolerance by using optimoptions to reduce the value of the
ObjectivelLimit tolerance.

fsolve Could Not Solve Equation

fsolve can fail to solve an equation for various reasons. Here are some suggestions for
how to proceed:

1

Try Changing the Initial Point on page 4-23. fsolve relies on an initial point. By
giving it different initial points, you increase the chances of success.

Check the definition of the equation to make sure that it is smooth. fsolve might fail
to converge for equations with discontinuous gradients, such as absolute value.
fsolve can fail to converge for functions with discontinuities.

Check that the equation is “square,” meaning equal dimensions for input and output
(has the same number of unknowns as values of the equation).

Change tolerances, especially OptimalityTolerance and StepTolerance. If you
attempt to get high accuracy by setting tolerances to very small values, fsolve can
fail to converge. If you set tolerances that are too high, fsolve can fail to solve an
equation accurately.

Check the problem definition. Some problems have no real solution, such as
X*2 +1=0.
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Solver Takes Too Long

Solvers can take excessive time for various reasons. To diagnose the reason or enable
faster solution, use one or more of the following techniques.

“Enable Iterative Display” on page 4-11

“Use Appropriate Tolerances” on page 4-11

“Use a Plot Function” on page 4-12

“Use 'lbfgs' HessianApproximation Option” on page 4-12

“Enable CheckGradients” on page 4-12

“Use Inf Instead of a Large, Arbitrary Bound” on page 4-13

“Use an Output Function” on page 4-13

“Use a Sparse Solver or a Multiply Function” on page 4-13

© ® N U W

“Use Parallel Computing” on page 4-14

Enable Iterative Display
Set the Display option to 'iter'. This setting shows the results of the solver iterations.

To enable iterative display:

* Using the Optimization app, choose Level of display to be iterative or iterative
with detailed message.

» At the MATLAB command line, enter
options = optimoptions('solvername','Display', 'iter');
Call the solver using the options structure.

For an example of iterative display, see “Interpret the Result” on page 1-12. For more
information, see “What to Look For in Iterative Display” on page 4-4.

Use Appropriate Tolerances

Solvers can fail to converge if tolerances are too small, especially
OptimalityTolerance and StepTolerance.

4-11
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To change tolerances using the Optimization app, use the Stopping criteria list at the
top of the Options pane.

To change tolerances at the command line, use optimoptions as described in “Set and
Change Options” on page 2-70.

Use a Plot Function

You can obtain more visual or detailed information about solver iterations using a plot
function. For a list of the predefined plot functions, see Options > Plot functions in the
Optimization app. The Options section of your solver's function reference pages also lists
the plot functions.

To use a plot function:

* Using the Optimization app, check the boxes next to each plot function you wish to
use.

e At the MATLAB command line, enter

options = optimoptions('solvername','PlotFcn',{@plotfcnl,@plotfcn2,...});
Call the solver using the options structure.

For an example of using a plot function, see “Using a Plot Function” on page 3-30.

Use 'Ibfgs’' HessianApproximation Option

For the fmincon solver, if you have a problem with many variables (hundreds or more),
then oftentimes you can save time and memory by setting the HessianApproximation
option to ' Lbfgs'. This causes the fmincon 'interior-point' algorithm to use a
low-memory Hessian approximation.

Enable CheckGradients

If you have supplied derivatives (gradients or Jacobians) to your solver, the solver can fail
to converge if the derivatives are inaccurate. For more information about using the
CheckGradients option, see “Checking Validity of Gradients or Jacobians” on page 2-81.
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Use Inf Instead of a Large, Arbitrary Bound

If you use a large, arbitrary bound (upper or lower), a solver can take excessive time, or
even fail to converge. However, if you set Inf or -Inf as the bound, the solver can take
less time, and might converge better.

Why? An interior-point algorithm can set an initial point to the midpoint of finite bounds.
Or an interior-point algorithm can try to find a “central path” midway between finite
bounds. Therefore, a large, arbitrary bound can resize those components inappropriately.
In contrast, infinite bounds are ignored for these purposes.

Minor point: Some solvers use memory for each constraint, primarily via a constraint
Hessian. Setting a bound to Inf or - Inf means there is no constraint, so there is less
memory in use, because a constraint Hessian has lower dimension.

Use an Output Function

You can obtain detailed information about solver iterations using an output function.
Solvers call output functions at each iteration. You write output functions using the syntax
described in “Output Function” on page 14-36.

For an example of using an output function, see “Example: Using Output Functions” on
page 3-36.

Use a Sparse Solver or a Multiply Function

Large problems can cause MATLAB to run out of memory or time. Here are some
suggestions for using less memory:

* Use a large-scale algorithm if possible (see “Large-Scale vs. Medium-Scale
Algorithms” on page 2-14). These algorithms include trust-region-reflective,
interior-point, the fminunc trust-region algorithm, the fsolve trust-
region-dogleg algorithm, and the Levenberg-Marquardt algorithm. In contrast,
the active-set, quasi-newton, and sqp algorithms are not large-scale.

Tip If you use a large-scale algorithm, then use sparse matrices for your linear
constraints.

* Use a Jacobian multiply function or Hessian multiply function. For examples, see
“Jacobian Multiply Function with Linear Least Squares” on page 11-38, “Quadratic
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Minimization with Dense, Structured Hessian” on page 10-19, and “Minimization
with Dense Structured Hessian, Linear Equalities” on page 6-111.

Use Parallel Computing

If you have a Parallel Computing Toolbox license, your solver might run faster using
parallel computing. For more information, see “Parallel Computing”.
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When the Solver Might Have Succeeded

In this section...

“Final Point Equals Initial Point” on page 4-15

“Local Minimum Possible” on page 4-15

Final Point Equals Initial Point

The initial point seems to be a local minimum or solution because the first-order
optimality measure is close to 0. You might be unhappy with this result, since the solver
did not improve your initial point.

If you are unsure that the initial point is truly a local minimum, try:

1 Starting from different points — see Change the Initial Point on page 4-23.

2 Checking that your objective and constraints are defined correctly (for example, do
they return the correct values at some points?) — see Check your Objective and
Constraint Functions on page 4-25. Check that an infeasible point does not cause an
error in your functions; see “Iterations Can Violate Constraints” on page 2-42.

3 Changing tolerances, such as OptimalityTolerance, ConstraintTolerance,
and StepTolerance — see Use Appropriate Tolerances on page 4-11.

4 Scaling your problem so each coordinate has about the same effect — see Rescale the
Problem on page 4-20.

5 Providing gradient and Hessian information — see Provide Analytic Gradients or
Jacobian on page 4-20 and Provide a Hessian on page 4-21.

Local Minimum Possible

The solver might have reached a local minimum, but cannot be certain because the first-
order optimality measure is not less than the OptimalityTolerance tolerance. (To
learn more about first-order optimality measure, see “First-Order Optimality Measure” on
page 3-11.) To see if the reported solution is reliable, consider the following suggestions.
“1. Nonsmooth Functions” on page 4-16

“2. Rerun Starting At Final Point” on page 4-16

“3. Try a Different Algorithm” on page 4-17

“4, Change Tolerances” on page 4-19

“5. Rescale the Problem” on page 4-20

“6. Check Nearby Points” on page 4-20
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“7. Change Finite Differencing Options” on page 4-20
“8. Provide Analytic Gradients or Jacobian” on page 4-20
“9. Provide a Hessian” on page 4-21

1. Nonsmooth Functions

If you try to minimize a nonsmooth function, or have nonsmooth constraints, “Local
Minimum Possible” can be the best exit message. This is because the first-order
optimality conditions do not apply at a nonsmooth point.

To satisfy yourself that the solution is adequate, try to Check Nearby Points on page 4-
24,

2. Rerun Starting At Final Point

Restarting an optimization at the final point can lead to a solution with a better first-order
optimality measure. A better (lower) first-order optimality measure gives you more reason
to believe that the answer is reliable.

For example, consider the following minimization problem, taken from the example
“Using Symbolic Mathematics with Optimization Toolbox™ Solvers” on page 6-130:

options = optimoptions('fminunc', 'Algorithm', 'quasi-newton');
funh = @(x)log(1l + (x(1) - 4/3)72 + 3*(x(2) - (x(1)"3 - x(1)))"2);
[xfinal fval exitflag] = fminunc(funh,[-1;2],0options)

Local minimum possible.

fminunc stopped because it cannot decrease the
objective function along the current search direction.

xfinal =
1.3333
1.0370

fval =
8.5265e-014

exitflag =
5

The exit flag value of 5 indicates that the first-order optimality measure was above the
function tolerance. Run the minimization again starting from xfinal:
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[xfinal2 fval2 exitflag2] = fminunc(funh,xfinal,options)
Local minimum found.

Optimization completed because the size of the gradient is
less than the default value of the function tolerance.

xfinal2 =
1.3333
1.0370

fval2 =
6.5281e-014

exitflag2 =
1

The local minimum is “found,” not “possible,” and the exitflag is 1, not 5. The two
solutions are virtually identical. Yet the second run has a more satisfactory exit message,
since the first-order optimality measure was low enough: 7.5996e-007, instead of
3.9674e-006.

3. Try a Different Algorithm

Many solvers give you a choice of algorithm. Different algorithms can lead to the use of
different stopping criteria.

For example, Rerun Starting At Final Point on page 4-16 returns exitflag 5 from the first
run. This run uses the quasi-newton algorithm.

The trust-region algorithm requires a user-supplied gradient. betopt.m contains a
calculation of the objective function and gradient:

function [f gradf] = betopt(x)

g=1+ (x(1)-4/3)"2 + 3*(x(2) - (x(1)"3-x(1)))"2;

f = log(g);

gradf(l) = 2*(x(1)-4/3) + 6*(x(2) - (x(1)73-x(1)))*(1-3*x(1)"2);
gradf(l) = gradf(l)/g;

gradf(2) = 6*(x(2) - (x(1)"3 -x(1)))/g;

Running the optimization using the trust- region algorithm results in a different
exitflag:
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options = optimoptions('fminunc', 'Algorithm', 'trust-region', 'SpecifyObjectiveGradient'
[xfinal3 fval3 exitflag3] = fminunc(@betopt,[-1;2],0ptions)

Local minimum possible.
fminunc stopped because the final change in function value
relative to its initial value is less than the default value
of the function tolerance.
xfinal3 =

1.3333

1.0370

fval3 =
7.6659e-012

exitflag3 =
3

The exit condition is better than the quasi-newton condition, though it is still not the
best. Rerunning the algorithm from the final point produces a better point, with extremely
small first-order optimality measure:

[xfinal4 fvald eflag4 outputd] = fminunc(@betopt,xfinal3,options)
Local minimum found.

Optimization completed because the size of the gradient is
less than the default value of the function tolerance.

xfinal4 =

1.3333
1.0370

fvald4 =
0

eflag4 =
1

outputd =
iterations: 1
funcCount: 2
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cgiterations: 1
firstorderopt: 7.5497e-11
algorithm: 'trust-region'
message: 'Local minimum found.

Optimization completed because the size o...'
constrviolation: []

4. Change Tolerances

Sometimes tightening or loosening tolerances leads to a more satisfactory result. For
example, choose a smaller value of OptimalityTolerance in the Try a Different
Algorithm on page 4-17 section:

options = optimoptions('fminunc', 'Algorithm', 'trust-region’, ...
'OptimalityTolerance', le-8, 'SpecifyObjectiveGradient',6 true); % default=le-6
[xfinal3 fval3 eflag3 output3] = fminunc(@betopt,[-1;2],options)

Local minimum found.

Optimization completed because the size of the gradient is
less than the selected value of the function tolerance.

xfinal3 =
1.3333
1.0370

fval3 =
0

eflag3 =
1

output3 =
iterations: 15
funcCount: 16
cgiterations: 12
firstorderopt: 7.5497e-11
algorithm: 'trust-region'
message: 'Local minimum found.

Optimization completed because the size...'
constrviolation: []

fminunc took one more iteration than before, arriving at a better solution.
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5. Rescale the Problem

Try to have each coordinate give about the same effect on the objective and constraint
functions by scaling and centering. For examples, see Center and Scale Your Problem on
page 4-5.

6. Check Nearby Points

Evaluate your objective function and constraints, if they exist, at points near the final
point. If the final point is a local minimum, nearby feasible points have larger objective
function values. See Check Nearby Points on page 4-24 for an example.

If you have a Global Optimization Toolbox license, try running the patternsearch solver
from the final point. patternsearch examines nearby points, and accepts all types of
constraints.

7. Change Finite Differencing Options

Central finite differences are more time-consuming to evaluate, but are much more
accurate. Use central differences when your problem can have high curvature.

To choose central differences at the command line, use optimoptions to set
'"FiniteDifferenceType' to 'central’, instead of the default ' forward'.

To choose central differences in the Optimization app, set Options > Approximated
derivatives > Type to be central differences.

8. Provide Analytic Gradients or Jacobian

If you do not provide gradients or Jacobians, solvers estimate gradients and Jacobians by
finite differences. Therefore, providing these derivatives can save computational time,
and can lead to increased accuracy.

For constrained problems, providing a gradient has another advantage. A solver can
reach a point x such that x is feasible, but finite differences around x always lead to an
infeasible point. In this case, a solver can fail or halt prematurely. Providing a gradient
allows a solver to proceed.

Provide gradients or Jacobians in the files for your objective function and nonlinear
constraint functions. For details of the syntax, see “Writing Scalar Objective Functions”
on page 2-23, “Writing Vector and Matrix Objective Functions” on page 2-34, and
“Nonlinear Constraints” on page 2-48.
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To check that your gradient or Jacobian function is correct, use the CheckGradients
option, as described in “Checking Validity of Gradients or Jacobians” on page 2-81.

If you have a Symbolic Math Toolbox license, you can calculate gradients and Hessians
programmatically. For an example, see “Symbolic Math Toolbox Calculates Gradients and
Hessians” on page 6-116.

For examples using gradients and Jacobians, see “Minimization with Gradient and
Hessian” on page 6-15, “Nonlinear Constraints with Gradients” on page 6-82,
“Symbolic Math Toolbox Calculates Gradients and Hessians” on page 6-116, “Nonlinear
Equations with Analytic Jacobian” on page 12-9, and “Nonlinear Equations with
Jacobian” on page 12-14.

9. Provide a Hessian
Solvers often run more reliably and with fewer iterations when you supply a Hessian.
The following solvers and algorithms accept Hessians:

 fmincon interior-point. Write the Hessian as a separate function. For an
example, see “fmincon Interior-Point Algorithm with Analytic Hessian” on page 6-85.

 fmincon trust-region-reflective. Give the Hessian as the third output of the
objective function. For an example, see “Minimization with Dense Structured Hessian,
Linear Equalities” on page 6-111.

* fminunc trust-region. Give the Hessian as the third output of the objective
function. For an example, see “Minimization with Gradient and Hessian” on page 6-
15.

If you have a Symbolic Math Toolbox license, you can calculate gradients and Hessians
programmatically. For an example, see “Symbolic Math Toolbox Calculates Gradients and
Hessians” on page 6-116.

The example in “Symbolic Math Toolbox Calculates Gradients and Hessians” on page 6-
116 shows fmincon taking 77 iterations without a Hessian, but only 19 iterations with a
Hessian.
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When the Solver Succeeds
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In this section...

“What Can Be Wrong If The Solver Succeeds?” on page 4-22
“1. Change the Initial Point” on page 4-23
“2. Check Nearby Points” on page 4-24

“3. Check your Objective and Constraint Functions” on page 4-25

What Can Be Wrong If The Solver Succeeds?

A solver can report that a minimization succeeded, and yet the reported solution can be
incorrect. For a rather trivial example, consider minimizing the function f(x) = x3 for x
between -2 and 2, starting from the point 1/3:

options = optimoptions('fmincon', 'Algorithm', 'active-set');
ffun = @(x)x"3;

xfinal = fmincon(ffun,1/3,[1,[1,[1,[]1,-2,2,[]1,0ptions)

Local minimum found that satisfies the constraints.
Optimization completed because the objective function is
non-decreasing in feasible directions, to within the default
valueof the function tolerance, and constraints were satisfied
to within the default value of the constraint tolerance.

No active inequalities.

xfinal =
-1.5056e-008

The true minimum occurs at x = -2. fmincon gives this report because the function f(x)
is so flat near x = 0.

Another common problem is that a solver finds a local minimum, but you might want a
global minimum. For more information, see “Local vs. Global Optima” on page 4-27.

Lesson: check your results, even if the solver reports that it “found” a local minimum, or
“solved” an equation.

This section gives techniques for verifying results.
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1. Change the Initial Point

The initial point can have a large effect on the solution. If you obtain the same or worse
solutions from various initial points, you become more confident in your solution.

For example, minimize f(x) = x3 + x* starting from the point 1/4:

ffun = @(X)X™3 + x™4;

options = optimoptions('fminunc', 'Algorithm', 'quasi-newton');
[xfinal fval] = fminunc(ffun,1/4,options)

Local minimum found.

Optimization completed because the size of the gradient
is less than the default value of the function tolerance.

X =
-1.6764e-008

fval =
-4.7111e-024

Change the initial point by a small amount, and the solver finds a better solution:
[xfinal fval] = fminunc(ffun,1/4+.001,options)
Local minimum found.

Optimization completed because the size of the gradient
is less than the default value of the function tolerance.

xfinal =
-0.7500

fval =
-0.1055

x = -0.75 is the global solution; starting from other points cannot improve the solution.

For more information, see “Local vs. Global Optima” on page 4-27.
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2. Check Nearby Points

To see if there are better values than a reported solution, evaluate your objective function
and constraints at various nearby points.

For example, with the objective function ffun from “What Can Be Wrong If The Solver
Succeeds?” on page 4-22, and the final point xfinal = -1.5056e-008, calculate
ffun(xfinalzA) for some A:

delta = .1;
[ffun(xfinal), ffun(xfinal+delta), ffun(xfinal-delta)]

ans =
-0.0000 0.0011 -0.0009

The objective function is lower at ffun(xfinal-A), so the solver reported an incorrect
solution.

A less trivial example:

options = optimoptions(@fmincon, 'Algorithm', 'active-set');

b = [0,-1]; ub = [1,1];

ffun = @(x) (x(1)-(x(1)-x(2))"2);

[x fval exitflag] = fmincon(ffun,[1/2 1/31,[1,I[1,I[1,I[1,...
1b,ub,[]1,options)

Local minimum found that satisfies the constraints.
Optimization completed because the objective function is
non-decreasing in feasible directions, to within the default
valueof the function tolerance, and constraints were satisfied
to within the default value of the constraint tolerance.

Active inequalities (to within options.ConstraintTolerance = 1e-006):

lower upper ineqlin inegnonlin
1
X =
1.0e-007 *
0 0.1614
fval =
-2.6059e-016
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exitflag =
1

Evaluating ffun at nearby feasible points shows that the solution x is not a true
minimum:

[ffun([0O,.001]),ffun([0O,-.001]),...
ffun([.001,-.001]),ffun([.001,.001])]

ans =
1.0e-003 *
-0.0010 -0.0010 0.9960 1.0000

The first two listed values are smaller than the computed minimum fval.
If you have a Global Optimization Toolbox license, you can use the patternsearch

function to check nearby points.

3. Check your Objective and Constraint Functions

Double-check your objective function and constraint functions to ensure that they
correspond to the problem you intend to solve. Suggestions:

* Check the evaluation of your objective function at a few points.

* Check that each inequality constraint has the correct sign.

* Ifyou performed a maximization, remember to take the negative of the reported
solution. (This advice assumes that you maximized a function by minimizing the
negative of the objective.) For example, to maximize f(x) = x - x?, minimize g(x) = -
X + X2

options = optimoptions('fminunc', 'Algorithm', 'quasi-newton');
[x fval] = fminunc(@(x)-x+x~2,0,0ptions)

Local minimum found.

Optimization completed because the size of the gradient is
less than the default value of the function tolerance.

X =
0.5000

fval =
-0.2500
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The maximum of fis 0.25, the negative of fval.

* Check that an infeasible point does not cause an error in your functions; see
“Iterations Can Violate Constraints” on page 2-42.
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Local vs. Global Optima

In this section...
“Why Didn't the Solver Find the Smallest Minimum?” on page 4-27
“Searching for a Smaller Minimum” on page 4-28

“Basins of Attraction” on page 4-28

Why Didn't the Solver Find the Smallest Minimum?

In general, solvers return a local minimum. The result might be a global minimum, but
there is no guarantee that it is. This section describes why solvers behave this way, and
gives suggestions for ways to search for a global minimum, if needed.

* Alocal minimum of a function is a point where the function value is smaller than at
nearby points, but possibly greater than at a distant point.

* A global minimum is a point where the function value is smaller than at all other
feasible points.

Global minimum

Local minimum

Generally, Optimization Toolbox solvers find a local optimum. (This local optimum can be
a global optimum.) They find the optimum in the basin of attraction of the starting point.
For more information about basins of attraction, see “Basins of Attraction” on page 4-28.

There are some exceptions to this general rule.

* Linear programming and positive definite quadratic programming problems are
convex, with convex feasible regions, so there is only one basin of attraction. Indeed,
under certain choices of options, 1inprog ignores any user-supplied starting point,
and quadprog does not require one, though supplying one can sometimes speed a
minimization.

* Global Optimization Toolbox functions, such as simulannealbnd, attempt to search
more than one basin of attraction.
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Searching for a Smaller Minimum

If you need a global optimum, you must find an initial value for your solver in the basin of
attraction of a global optimum.

Suggestions for ways to set initial values to search for a global optimum:

» Use a regular grid of initial points.

* Use random points drawn from a uniform distribution if your problem has all its
coordinates bounded. Use points drawn from normal, exponential, or other random
distributions if some components are unbounded. The less you know about the location
of the global optimum, the more spread-out your random distribution should be. For
example, normal distributions rarely sample more than three standard deviations away
from their means, but a Cauchy distribution (density 1/(zm(1 + x?))) makes hugely
disparate samples.

» Use identical initial points with added random perturbations on each coordinate,
bounded, normal, exponential, or other.

» If you have a Global Optimization Toolbox license, use the GlobalSearch or
MultiStart solvers. These solvers automatically generate random start points within
bounds.

The more you know about possible initial points, the more focused and successful your
search will be.

Basins of Attraction

If an objective function f(x) is smooth, the vector -Vf(x) points in the direction where f(x)
decreases most quickly. The equation of steepest descent, namely

%x@) — Vf(x(2),

yields a path x(t) that goes to a local minimum as t gets large. Generally, initial values x(0)
that are near to each other give steepest descent paths that tend to the same minimum
point. The basin of attraction for steepest descent is the set of initial values that lead to
the same local minimum.

The following figure shows two one-dimensional minima. The figure shows different
basins of attraction with different line styles, and shows directions of steepest descent
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with arrows. For this and subsequent figures, black dots represent local minima. Every
steepest descent path, starting at a point x(0), goes to the black dot in the basin
containing x(0).

f(x)
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One-

dimensional basins

The following figure shows how steepest descent paths can be more complicated in more
dimensions.

One

basin of attraction, showing steepest descent paths from various starting

points

The following figure shows even more complicated paths and basins of attraction.
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Several basins of attraction

Constraints can break up one basin of attraction into several pieces. For example,
consider minimizing y subject to:

s y=lx
o y=5-4(x-2)2

The figure shows the two basins of attraction with the final points.
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The steepest descent paths are straight lines down to the constraint boundaries. From the
constraint boundaries, the steepest descent paths travel down along the boundaries. The

final point is either (0,0) or (11/4,11/4), depending on whether the initial x-value is above
or below 2.
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Optimizing a Simulation or Ordinary Differential
Equation

4-32

In this section...

“What Is Optimizing a Simulation or ODE?” on page 4-32
“Potential Problems and Solutions” on page 4-32

“Bibliography” on page 4-37

What Is Optimizing a Simulation or ODE?

Sometimes your objective function or nonlinear constraint function values are available
only by simulation or by numerical solution of an ordinary differential equation (ODE).
Such optimization problems have several common characteristics and challenges,
discussed in “Potential Problems and Solutions” on page 4-32.

To optimize a Simulink® model easily, try using Simulink Design Optimization™.

Potential Problems and Solutions

* “Problems in Finite Differences” on page 4-32

* “Suggestions for Finite Differences” on page 4-33

* “Problems in Stochastic Functions” on page 4-36

* “Suggestions for Stochastic Functions” on page 4-36

* “Common Calculation of Objective and Constraints” on page 4-36

* “Failure in Objective or Constraint Function Evaluation” on page 4-36
* “Suggestions for Evaluation Failures” on page 4-37

Problems in Finite Differences

Optimization Toolbox solvers use derivatives of objective and constraint functions
internally. By default, they estimate these derivatives using finite difference
approximations of the form

F(x+6)-F(x)
o
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or

F(x+6)-F(x-8)
26 ’

These finite difference approximations can be inaccurate because:

* Alarge value of 6 allows more nonlinearity to affect the finite difference.
* A small value of 6 leads to inaccuracy due to limited precision in numerics.

Specifically, for simulations and numerical solutions of ODEs:

* Simulations are often insensitive to small changes in parameters. This means that if
you use too small a perturbation 6, the simulation can return a spurious estimated
derivative of 0.

* Both simulations and numerical solutions of ODEs can have inaccuracies in their
function evaluations. These inaccuracies can be amplified in finite difference
approximations.

* Numerical solution of ODEs introduces noise at values much larger than machine
precision. This noise can be amplified in finite difference approximations.

» If an ODE solver uses variable step sizes, then sometimes the number of ODE steps in
the evaluation of F(x + 6) can differ from the number of steps in the evaluation of F(x).
This difference can lead to a spurious difference in the returned values, giving a
misleading estimate of the derivative.

Suggestions for Finite Differences

* “Avoid Finite Differences by Using Direct Search” on page 4-33
» “Set Larger Finite Differences” on page 4-34

* “Use a Gradient Evaluation Function” on page 4-34

* “Use Tighter ODE Tolerances” on page 4-35

Avoid Finite Differences by Using Direct Search

If you have a Global Optimization Toolbox license, you can try using patternsearch as
your solver. patternsearch does not attempt to estimate gradients, so does not suffer
from the limitations in “Problems in Finite Differences” on page 4-32.

If you use patternsearch for expensive (time-consuming) function evaluations, use the
Cache option:

4-33



4 Steps to Take After Running a Solver

4-34

options = psoptimset('Cache','on');

If you cannot use patternsearch, and have a relatively low-dimensional unconstrained
minimization problem, try fminsearch instead. fminsearch does not use finite
differences. However, fminsearch is not a fast or tunable solver.

Set Larger Finite Differences

You can sometimes avoid the problems in “Problems in Finite Differences” on page 4-32
by taking larger finite difference steps than the default.

» Ifyou have MATLAB R2011b or later, set a finite difference step size option to a value
larger than the default sqrt(eps) or eps”™(1/3), such as:

* For R2011b-R2012b:

options = optimset('FinDiffRelStep',1le-3);
* For R2013a-R2015b and a solver named 'solvername':

options = optimoptions('solvername', 'FinDiffRelStep',le-3);
e For R2016a onwards and a solver named 'solvername':

options = optimoptions('solvername', 'FiniteDifferenceStepSize',le-3);

If you have different scales in different components, set the finite difference step size
to a vector proportional to the component scales.

» Ifyou have MATLAB R2011a or earlier, set the DiffMinChange option to a larger
value than the default 1e-8, and possibly set the DiffMaxChange option also, such
as:

options = optimset('DiffMinChange',le-3, 'DiffMaxChange’',1);

Note It is difficult to know how to set these finite difference sizes.

You can also try setting central finite differences:
options = optimoptions('solvername', 'FiniteDifferenceType', 'central');
Use a Gradient Evaluation Function

To avoid the problems of finite difference estimation, you can give an approximate
gradient function in your objective and nonlinear constraints. Remember to set the
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SpecifyObjectiveGradient option to true using optimoptions, and, if relevant,
also set the SpecifyConstraintGradient option to true.

For some ODEs, you can evaluate the gradient numerically at the same time as you
solve the ODE. For example, suppose the differential equation for your objective
function z(t,x) is

D 2 = Gt x),
dt

where x is the vector of parameters over which you minimize. Suppose x is a scalar.
Then the differential equation for its derivative y,

y(t,2) = %z@x)

is

0G(z,t,x) y
oz

(4 050

d
—y(t,x) =
dt Y b
where z(t,x) is the solution of the objective function ODE. You can solve for y(t,x) in the
same system of differential equations as z(t,x). This solution gives you an
approximated derivative without ever taking finite differences. For nonscalar x, solve
one ODE per component.

For theoretical and computational aspects of this method, see Leis and Kramer [2]. For
computational experience with this and finite-difference methods, see Figure 7 of Raue
et al. [3].

For some simulations, you can estimate a derivative within the simulation. For
example, the likelihood ratio technique described in Reiman and Weiss [4] or the
infinitesimal perturbation analysis technique analyzed in Heidelberger, Cao, Zazanis,
and Suri [1] estimate derivatives in the same simulation that estimates the objective or
constraint functions.

Use Tighter ODE Tolerances

You can use odeset to set the AbsTol or RelTol ODE solver tolerances to values below

their defaults. However, choosing too small a tolerance can lead to slow solutions,
convergence failure, or other problems. Never choose a tolerance less than 1e-9 for
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RelTol. The lower limit on each component of AbsTol depends on the scale of your
problem, so there is no advice.

Problems in Stochastic Functions

If a simulation uses random numbers, then evaluating an objective or constraint function
twice can return different results. This affects both function estimation and finite
difference estimation. The value of a finite difference might be dominated by the variation
due to randomness, rather than the variation due to different evaluation points x and

x+ 6.

Suggestions for Stochastic Functions

If your simulation uses random numbers from a stream you control, reset the random
stream before each evaluation of your objective or constraint functions. This practice can
reduce the variability in results. For example, in an objective function:

function f = mysimulation(x)

rng default % or any other resetting method

end

For details, see “Generate Random Numbers That Are Repeatable” (MATLAB).

Common Calculation of Objective and Constraints

Frequently, a simulation evaluates both the objective function and constraints during the
same simulation run. Or, both objective and nonlinear constraint functions use the same
expensive computation. Solvers such as Tmincon separately evaluate the objective
function and nonlinear constraint functions. This can lead to a great loss of efficiency,
because the solver calls the expensive computation twice. To circumvent this problem,
use the technique in “Objective and Nonlinear Constraints in the Same Function” on page
2-59.

Failure in Objective or Constraint Function Evaluation

Your simulation or ODE can fail for some parameter values.
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Suggestions for Evaluation Failures

Set Appropriate Bounds

While you might not know all limitations on the parameter space, try to set appropriate
bounds on all parameters, both upper and lower. This can speed up your optimization, and
can help the solver avoid problematic parameter values.

Use a Solver That Respects Bounds

As described in “Iterations Can Violate Constraints” on page 2-42, some algorithms can
violate bound constraints at intermediate iterations. For optimizing simulations and
ODEs, use algorithms that always obey bound constraints. See “Algorithms That Satisfy
Bound Constraints” on page 2-42.

Return NaN

If your simulation or ODE solver does not successfully evaluate an objective or nonlinear
constraint function at a point x, have your function return NaN. Most Optimization Toolbox
and Global Optimization Toolbox solvers have the robustness to attempt a different
iterative step if they encounter a NaN value. These robust solvers include:

+ fmincon interior-point, sgp, and trust-region-reflective algorithms

* fminunc

* lsqgcurvefit

* 1lsqgnonlin

* patternsearch

Some people are tempted to return an arbitrary large objective function value at an
unsuccessful, infeasible, or other poor point. However, this practice can confuse a solver,

because the solver does not realize that the returned value is arbitrary. When you return
NaN, the solver can attempt to evaluate at a different point.
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Optimization App

Note The Optimization app warns that it will be removed in a future release. For
alternatives, see “Optimization App Alternatives” on page 5-15.

In this section...

“Optimization App Basics” on page 5-2
“Specifying Certain Options” on page 5-8

“Importing and Exporting Your Work” on page 5-11

Optimization App Basics

* “How to Open the Optimization App” on page 5-2

+ “Examples that Use the Optimization App” on page 5-4
* “Steps for Using the Optimization App” on page 5-4

* “Pausing and Stopping” on page 5-5

* “Viewing Results” on page 5-6

* “Final Point” on page 5-7

» “Starting a New Problem” on page 5-7

How to Open the Optimization App
To open the Optimization app, type
optimtool

in the Command Window. This opens the Optimization app, as shown in the following
figure.
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-
4 Optimization Tool

Algorithm: | Interior point

Menlinear constraint function:

Derivatives:

Run solver and view results

Pause

Problem

Objective function: -
Derivatives: :Appm}(imated. by solver -
Start point:

Constraints:

Linear inequalities: A b

Linear equalities: Aeq: bedq:

Bounds: Lower: Upper

:Appmmmated by solver v:

Stop

Max iterations: Use default: 1000

@ Specify:

Max function evaluations: @ Use default: 3000

© Specify:

Use default: 1e-10

X tolerance:
@ Specify:

Function tolerance: @ Use default: 1e-6

Specify:
Constraint tolerance: @ Use default: 1e-6
@ Specify:

SQP constraint tolerance: @ Use default: 1e-6

Specify:

Unboundedness threshold Use default: -1e20

@ Specify:

[ [=l Function value check

[T Error if user-supplied function returns Inf, NaN or ¢

[ =l User- lied derivati

Current iteration: Clear Results
-
AW
Final point:
N
4 2

Validate user-supplied derivatives
Hessian sparsity pattern: @ Use default: sparse(one
Specify:

Hessian multiply function: @) Use default: Mo multipl

Specify:

A Aarirativier

< 1 | b

fmincon Solver

Find a minimum of a constrained nonlinear
multivariable function using the interior-poil

IClick to expand the section below correspc
our task.

m

Problem Setup and Results
¥ Solver and Algorithm

 Problem
» Constraints
¥ Run solver and view results

(Options
¥ Stopping criteria

-

Function value check

-

User-supplied derivatives

-

Approximated derivatives

-

Hessian

-

Algorithm seftings

-

Inner iteration stopping criteria

F Plot functions

-

Output function

-

Display to command window
ISuggested Next Steps

B Overview of Mext Steps

B When the Solver Fails

F When the Solver Might Have Succeedec
F When the Solver Succeeds

- | More Information

4 I +

File Help
Problem Setup and Results Options Quick Reference <
) [ = criteria - e
Solver: fmincon - Constrained nonlinear minimizati.. v | F F

m

You can also start the Optimization app from the MATLAB Apps tab.
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HOME SHORTCUTS

BB B v & U

Get More Install Package MuPAD Optimization PDE Curve f
Apps App App Motebook

The reference page for the Optimization app provides variations for starting the
optimtool function.

Examples that Use the Optimization App

The following documentation examples use the optimization app:

“Solve a Constrained Nonlinear Problem” on page 1-5

“Optimization App with the fmincon Solver” on page 6-98
“Optimization App with the Isqlin Solver” on page 11-34

“Plot Functions” on page 3-30

“fmincon Interior-Point Algorithm with Analytic Hessian” on page 6-85

Steps for Using the Optimization App

This is a summary of the steps to set up your optimization problem and view results with
the Optimization app.



Optimization App

1. Select solver

and algorithm I:

2. Specify
function
to minimize

3. Set problem
parameters for
selected solver

5. Run solver — -

6. View
solver status
and results

7. Import and export
problem, options, and results

4. Specify options

Pausing and Stopping

While a solver is running, you can

L]

Op*mization Tool =|gj X‘
il Help
Problem Setup and Results Options |
=) criteria -
- Solver: Iﬁ . -G v r———— _'_I I—
Max ¢ Use default: 400
L Algorithm: ITrust region reflective ;l
Comem|
Problem
— WWI ;] Max function evaluations: ¢ Use default: 100*numberOfVariables
De I"""‘ i d by solver 3 C  Spedfy: I
[ Startpoint: | X tolerance: (% Use default: 1e-6
Constraints « specfy: |
Linear inequalities A | b: | Function tolerance: (& Use default: 126
Linear equalities: Aeq: | beg: |  Specify: r—_ e
Bounds: Lower: | Upper: | Nonlinear constraint tolerance: (¢ Use default: 1e-6
Nonlinear constraint function I  Speiifyi l—
= ki I Senetet Byt ;I St mnsiraint tolerance: & Use default: 1e6
Run solver and view results -
Start I Pause I Stap I Unboundedness threshold: @ Use default: -1220
Current iteration: I Clear Results | € Spedfy: I—
‘ =1 Function value check |
™ Error if user-supplied function returns Inf, NaN or complex
f = User-supplied derivatives |
I™ validate user-supplied derivatives
Hessian sparsity pattern: (¢ Use default: ( iy )
C spedfy: |
\ 4 |
Findl poink Hessian multiply function: & Use defauit: No muftiply function
L I | " Spedfy: l
L ‘ I~ Approximated derivatives ]
4 b

Click Pause to temporarily suspend the algorithm. To resume the algorithm using the
current iteration at the time you paused, click Resume.

Click Stop to stop the algorithm. The Run solver and view results window displays
information for the current iteration at the moment you clicked Stop.
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You can export your results after stopping the algorithm. For details, see “Exporting Your
Work” on page 5-11.

Viewing Results

When a solver terminates, the Run solver and view results window displays the reason
the algorithm terminated. To clear the Run solver and view results window between
runs, click Clear Results.

Sorting the Displayed Results

Depending on the solver and problem, results can be in the form of a table. If the table
has multiple rows, sort the table by clicking a column heading. Click the heading again to
sort the results in reverse.

For example, suppose you use the Optimization app to solve the 1sqlin problem
described in “Optimization App with the Isqlin Solver” on page 11-34. The result appears
as follows.

Run solver and view results

Pause Stop
Current teration: |1 Clear Results

-~

Optimization running.
Objective function value: 2,333333333333334
Minirnum found that satisfies the constraints.

m

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the default value of the optimality tolerance,
and constraints are satisfied to within the default value of the constraint tolerance,

A
Final point:
Index Value
0.333
0.667
3 1.333
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To sort the results by value, from lowest to highest, click Value. The results were already
in that order, so don’t change.

To sort the results in reverse order, highest to lowest, click Value again.

Final point:

Index Value
E 1.333
2 0.667
1 0.333

To return to the original order, click Index.

For an example of sorting a table returned by the Global Optimization Toolbox
gamultiobj function, see “Pareto Front for Two Objectives” (Global Optimization
Toolbox).

If you export results using File > Export to Workspace, the exported results do not
depend on the sorted display.

Final Point

The Final point updates to show the coordinates of the final point when the algorithm
terminated. If you don't see the final point, click the upward-pointing triangle on the _awr
icon on the lower-left.

Starting a New Problem
Resetting Options and Clearing the Problem

Selecting File > Reset Optimization Tool resets the problem definition and options to
the original default values. This action is equivalent to closing and restarting the app.

To clear only the problem definition, select File > Clear Problem Fields. With this
action, fields in the Problem Setup and Results pane are reset to the defaults, with the
exception of the selected solver and algorithm choice. Any options that you have modified
from the default values in the Options pane are not reset with this action.
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Setting Preferences for Changing Solvers

To modify how your options are handled in the Optimization app when you change
solvers, select File > Preferences, which opens the Preferences dialog box shown below.

4\ Preferences Lﬂ

fr) When changing te a different solver:

Reset options to default values

Prompt before resetting options to default values

@ Keep current options if possible

| oK | | Cancel

L -

The default value, Reset options to defaults, discards any options you specified
previously in the optimtool. Under this choice, you can select the option Prompt
before resetting options to defaults.

Alternatively, you can select Keep current options if possible to preserve the values
you have modified. Changed options that are not valid with the newly selected solver are
kept but not used, while active options relevant to the new solver selected are used. This
choice allows you to try different solvers with your problem without losing your options.

Specifying Certain Options

* “Plot Functions” on page 5-8
*  “Output function” on page 5-9
» “Display to Command Window” on page 5-10

Plot Functions

You can select a plot function to easily plot various measures of progress while the
algorithm executes. Each plot selected draws a separate axis in the figure window. If
available for the solver selected, the Stop button in the Run solver and view results
window to interrupt a running solver. You can select a predefined plot function from the



Optimization App

Optimization app, or you can select Custom function to write your own. Plot functions
not relevant to the solver selected are grayed out. The following lists the available plot
functions:

* Current point — Select to show a bar plot of the point at the current iteration.

* Function count — Select to plot the number of function evaluations at each iteration.
* Function value — Select to plot the function value at each iteration.

* Norm of residuals — Select to show a bar plot of the current norm of residuals at the
current iteration.

* Max constraint — Select to plot the maximum constraint violation value at each
iteration.

* Current step — Select to plot the algorithm step size at each iteration.

* First order optimality — Select to plot the violation of the optimality conditions for
the solver at each iteration.

* Custom function — Enter your own plot function as a function handle. To provide
more than one plot function use a cell array, for example, by typing:

{@plotfcn,@lotfcn2}

Write custom plot functions with the same syntax as output functions. For information,
see “Output Function” on page 14-36.

=l Plot functions

Current point Functicn count Functicn value
Max constraint Current step First order cptimality

Customn function:

The graphic above shows the plot functions available for the default fmincon solver.

Output function

Output function is a function or collection of functions the algorithm calls at each
iteration. Through an output function you can observe optimization quantities such as
function values, gradient values, and current iteration. Specify no output function, a
single output function using a function handle, or multiple output functions. To provide
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more than one output function use a cell array of function handles in the Custom
function field, for example by typing:

{@outputfcn,@outputfcn2}

For more information on writing an output function, see “Output Function” on page 14-
36.

| =l Qutput function

Custom function:

Display to Command Window

Select Level of display to specify the amount of information displayed when you run the
algorithm. Choose from the following; depending on the solver, only some may be
available:

» off (default) — Display no output.

+ final — Display the reason for stopping at the end of the run.

+ final with detailed message — Display the detailed reason for stopping at the
end of the run.

* notify — Display output only if the function does not converge.

* notify with detailed message — Display a detailed output only if the function
does not converge.

* iterative — Display information at each iteration of the algorithm and the reason
for stopping at the end of the run.

* iterative with detailed message — Display information at each iteration of the
algorithm and the detailed reason for stopping at the end of the run.

See “Enhanced Exit Messages” on page 3-5 for information on detailed messages.

Selecting Show diagnostics lists problem information and options that have changed
from the defaults.

The graphic below shows the display options for the fmincon solver. Some other solvers
have fewer options.
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= Display to command window

Level of display: off

] Show diagmw_

inal

final with detailed message
notify

notify with detailed message
iterative

iterative with detailed message

Importing and Exporting Your Work

» “Exporting Your Work” on page 5-11
* “Importing Your Work” on page 5-13
* “Generating a File” on page 5-13
Exporting Your Work

The Export to Workspace dialog box enables you to send your problem information to
the MATLAB workspace as a structure or object that you may then manipulate in the
Command Window.

To access the Export to Workspace dialog box shown below, select File > Export to
Workspace.

ru Export To Warkspace EI =] @

|:| Export problem and options to a MATLAE structure named:  aptimproblem

|:| Include information needed to resume this run

|:| Export options as a variable named: optionz
|:| Export results to g MATLAE structure named: optimresults
I Ok ] I Cancel ]
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You can specify results that contain:

* The problem and options information

* The problem and options information, and the state of the solver when stopped (this
means the latest point for most solvers, the current population for Genetic Algorithms
solvers, and the best point found for the Simulated Annealing solver)

* The states of random number generators rand and randn at the start of the previous
run, by checking the Use random states from previous run box for applicable
solvers

* The options information only
* The results of running your problem in the Optimization app

Exported results contain all optional information. For example, an exported results
structure for lsqcurvefit contains the data x, resnorm, residual, exitflag,
output, lambda, and jacobian.

After you have exported information from the Optimization app to the MATLAB
workspace, you can see your data in the MATLAB Workspace browser or by typing the
name of the structure at the Command Window. To see the value of a field in a structure
or object, double-click the name in the Workspace window. Alternatively, see the values by
entering exportname. fieldname at the command line. For example, so see the
message in an output structure, enter output.message. If a structure contains
structures or objects, you can double-click again in the workspace browser, or enter
exportname.name2.fieldname at the command line. For example, to see the level of
iterative display contained in the options of an exported problem structure, enter
optimproblem.options.Display.

You can run a solver on an exported problem at the command line by typing
solver(problem)

For example, if you have exported a fmincon problem named optimproblem, you can
type

fmincon(optimproblem)

This runs fmincon on the problem with the saved options in optimproblem. You can
exercise more control over outputs by typing, for example,

[x,fval,exitflag] = fmincon(optimproblem)

or use any other supported syntax.
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Caution For Optimization Toolbox solvers, the Optimization app imports and exports only
one option related to the former TolFun tolerance. It displays this option as Function
tolerance, and uses it as the OptimalityTolerance option. You cannot import, export,
or change the FunctionTolerance option in the Optimization app.

However, Global Optimization Toolbox solvers do not have an OptimalityTolerance
option. Those solvers can import, export, and set the FunctionTolerance option in the
Optimization app.

Importing Your Work

Whether you save options from Optimization Toolbox functions at the Command Window,
or whether you export options, or the problem and options, from the Optimization app,
you can resume work on your problem using the Optimization app.

There are three ways to import your options, or problem and options, to the Optimization
app:

* Call the optimtool function from the Command Window specifying your options, or
problem and options, as the input, for example,

optimtool(options)
* Select File > Import Options in the Optimization app.
* Select File > Import Problem in the Optimization app.

The methods described above require that the options, or problem and options, be
present in the MATLAB workspace.

If you import a problem that was generated with the Include information needed to
resume this run box checked, the initial point is the latest point generated in the
previous run. (For Genetic Algorithm solvers, the initial population is the latest population
generated in the previous run. For the Simulated Annealing solver, the initial point is the
best point generated in the previous run.) If you import a problem that was generated
with this box unchecked, the initial point (or population) is the initial point (or population)
of the previous run.

Generating a File

You may want to generate a file to continue with your optimization problem in the
Command Window at another time. You can run the file without modification to recreate
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the results that you created with the Optimization app. You can also edit and modify the
file and run it from the Command Window.

To export data from the Optimization app to a file, select File > Generate Code.
The generated file captures the following:

* The problem definition, including the solver, information on the function to be
minimized, algorithm specification, constraints, and start point

* The options with the currently selected option value
Running the file at the Command Window reproduces your problem results.

Although you cannot export your problem results to a generated file, you can save them in
a MAT-file that you can use with your generated file, by exporting the results using the
Export to Workspace dialog box, then saving the data to a MAT-file from the Command
Window.

See Also

More About

. “Optimization App Alternatives” on page 5-15
. “Solver-Based Optimization Problem Setup”
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Optimization App Alternatives

In this section...

“Optimize Without Using the App” on page 5-15

“Set Options Using Live Scripts” on page 5-15

“Set Options: Command Line or Standard Scripts” on page 5-17
“Choose Plot Functions” on page 5-19

“Pass Solver Arguments” on page 5-20

Optimize Without Using the App

Although the Optimization app affords convenient ways to set options and run problems,
it will be removed in a future release. This topic describes other ways to accomplish
optimization tasks without using the app.

* Set options easily — “Set Options Using Live Scripts” on page 5-15 or “Set Options:
Command Line or Standard Scripts” on page 5-17

* Monitor the optimization — “Choose Plot Functions” on page 5-19
* Pass solver arguments correctly — “Pass Solver Arguments” on page 5-20

Set Options Using Live Scripts

Beginning with R2018a, live scripts show suggestions for optimoptions names and
values.

1 On the Home tab, in the File section, click New Live Script to create a live script.

HOME l

2 Lm

News Mew
Script | Live Script

2 Inthe Live Editor, set options by entering options = optimoptions(. MATLAB
shows a list of solvers.
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options = optimoptions(| )

|@| optimoptions(solver,options) |
Fa

solver
'fgoalattain'
'fmincon®
'fminimax"
'fminunc®
'fseminf®
‘fsolve'

'‘ga’

3  Select a solver, then enter a comma. MATLAB displays a list of name-value pairs for
the solver.

options = optimoptions({’'fmincon’, )

|®| optimoptions(solver,options) |

/\
name-value pairs (Optional)

‘Algorithm’
'CheckGradients®
'ConstraintTole.
'Display”’
'FiniteDifferen.
'FiniteDifferen.
'FunctionTolera.

Select a name-value pair in one of these ways:

* Click the name-value pair.

* Use the arrow keys to highlight the name-value pair, and then press Tab.
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* Type the first letters of the name-value pair, and then press Tab.

4 Enter the appropriate value for the selected name. If the value is from a list of
choices, you can select it the same way that you selected the name.

Continue adding name-value pairs until the options are complete.
6 Be sure to pass the options to your solver.

[x,fval,exitflag,output] = ...
fmincon(fun,x0,A,b,Aeq,beq,1b,ub,nlcon,options)

Tip
» For help choosing a solver, see “Optimization Decision Table” on page 2-6.

» For help choosing the solver algorithm, see “Choosing the Algorithm” on page 2-8.
* To understand the meaning of other options, see “Set Options”.

Set Options: Command Line or Standard Scripts

Beginning with R2018a, the MATLAB command line and the standard Editor show
suggestions for optimoptions names and values.

1 Set options by entering options = optimoptions(' and pressing Tab. MATLAB
shows a list of solvers.

>>»> options = optimoptions ('

: kY
fgoalattain

fmincon

fminimax

fminunc

fzeminf

fsolve

ga

gamultiob]j W

2 Select a solver in one of these ways:
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* Double-click the solver.
* Use the arrow keys to highlight the solver, and then press Tab.
» Type the first letters of the solver, and then press Tab.
3 Enter ', ' and then press Tab. MATLAB displays a list of name-value pairs for the
solver.

»» options = optimoptions ("fmincon', !

gorsen |
CheckGradients
ConstraintTolerance

Display
FiniteDifferenceStepSize
FiniteDifferenceType
FunctionTolerance

HessianApproXximation

Select a name-value pair using one of the ways described in step 2.

4 Enter the appropriate value for the selected name. If the value is from a list of
choices, you can select it the same way that you selected the name.

5 Continue adding name-value pairs until the options are complete.
Be sure to pass the options to your solver.

[x,fval,exitflag,output] = ...
fmincon(fun,x0,A,b,Aeq,beq,1b,ub,nlcon,options)

Tip
» For help choosing a solver, see “Optimization Decision Table” on page 2-6.

» For help choosing the solver algorithm, see “Choosing the Algorithm” on page 2-8.
* To understand the meaning of other options, see “Set Options”.
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Choose Plot Functions

To monitor your optimization while it runs, use a plot function. Solvers have a set of built-
in plot functions. Use optimoptions to set the 'PlotFcn' name-value pair to a built-in
plot function, a cell array of built-in plot functions, or a function handle or cell array of
function handles to plot functions.

Choose plot functions using live scripts:

options = optimoptions{’'fmincon', 'PlotFcn',{}

(j optimoptions (solver, 'PlotFcn”,value,options)
Fa¥
PlotFcn value

[g 'optimplotconst.
[ 'optimplotfirst.
[] 'optimplotfunce.
[] 'optimplotfval’

[] 'optimplotsteps..

[sg] 'optimplotx’

To choose plot functions using the Editor or the command line, enter options =
optimoptions('solvername','PlotFcn',{"' and then press Tab:

optimplotconstrviolation

optimplotfirstorderopt
optimplotfuncocount
optimplotfval
optimplotstepsize

optimplotx

options = optimoptions('fmincon', "FlotFen', {'optimplot

To choose a custom plot function, pass a function handle such as @myplotfun. For details
on writing a custom plot function, see “Plot Functions” on page 14-46.
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linprog, lsqlin, quadprog, and lsgnonneg do not support plot functions, because
these solvers typically run quickly. To monitor their progress, you can use iterative display
for Linprog, the Lsqlin 'interior-point' algorithm, and the quadprog
"interior-point-convex' algorithm. Set the 'Display' optionto 'iter"'.

The fminbnd, fminsearch, and fzero solvers do not use options created by
optimoptions, only optimset. To see which plot functions these solvers use, consult
their reference pages:

 fminbnd options
 fminsearch options
« fzerooptions

Pass Solver Arguments

Solvers use positional function arguments. For example, the syntax for fmincon
arguments is

fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

If you want to include only fun, x0, 1b, and options arguments, then the appropriate
syntax is

fmincon(fun,x0,[1,[1,[1,[1,1lb,[]1,[],0ptions)
Sometimes the inexperienced will, instead, write
fmincon(fun,x0,lb,options) % This is incorrect!

This call throws an error. In this incorrect command, fmincon interprets the 1b
argument as representing the A matrix, and the options argument as representing the b
vector. The third argument always represents the A matrix, and the fourth argument
always represents the b vector.

It can be difficult to keep track of positional arguments as you enter a command. The
following are suggestions for obtaining the correct syntax.

» Use live scripts. As you enter a command, you see function hints that guide you to
enter the correct argument in each position. Enter [] for unused arguments.
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X = fmincon{fun,x8,)

(%) | fmincon(fun,x@,A,b) 1o0fd -

A
Linear inequality constraints

real matrix

Use the MATLAB Editor or command line. As you enter commands, you see lists of
proper syntax that guide you to enter the correct argument in each position. Enter [ ]
for unused arguments.

# = fmincon (fun,x0,

fmincon {fun, x0,A,b)

fmincon {(fun, x0, 4, b, Aeq, beq)

fmincon {fun, x0,A,b, Aeq, beq, 1b, ub)

fmincon (fun, x0,A, b, Aeq, beqg, 1b, ub, nonlcon}

fmincon (fun, x0,A, b, keq, beq, 1b, ub, nonlcon, options)

More Help...

Create a problem structure. This way, you can pass fewer arguments and pass named
arguments instead of positional arguments. For fmincon, the problem structure
requires at least the objective, x0, solver, and options fields. So, to give only the
fun, x0, b, and options arguments, create a problem structure as follows:

% These commands assume that fun, x0, 1lb, and opts exist
prob.objective = fun;

prob.x0 = x0;

prob.lb = 1b;
prob.options = opts;
prob.solver = 'fmincon';

You can also create a problem structure using one struct command.

% This command assumes that fun, x0, 1b, and opts exist
prob = struct('objective',fun,'x0',x0,"'lb"',1b,...
'options',opts, 'solver', ' fmincon")

If you have Global Optimization Toolbox, you can create a problem structure for
fmincon, fminunc, lsqcurvefit, and lsqnonlin by using createOptimProblem.
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See Also

More About

. “Solver-Based Optimization Problem Setup”
. “Set Options”

. “Run Sections in Live Scripts” (MATLAB)

. “Run Code Sections” (MATLAB)
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Unconstrained Nonlinear Optimization Algorithms

In this section...

“Unconstrained Optimization Definition” on page 6-2
“fminunc trust-region Algorithm” on page 6-2

“fminunc quasi-newton Algorithm” on page 6-5

Unconstrained Optimization Definition

Unconstrained minimization is the problem of finding a vector x that is a local minimum
to a scalar function f(x):

min f(x)

The term unconstrained means that no restriction is placed on the range of x.

fminunc trust-region Algorithm
Trust-Region Methods for Nonlinear Minimization

Many of the methods used in Optimization Toolbox solvers are based on trust regions, a
simple yet powerful concept in optimization.

To understand the trust-region approach to optimization, consider the unconstrained
minimization problem, minimize f(x), where the function takes vector arguments and
returns scalars. Suppose you are at a point x in n-space and you want to improve, i.e.,
move to a point with a lower function value. The basic idea is to approximate f with a
simpler function g, which reasonably reflects the behavior of function fin a neighborhood
N around the point x. This neighborhood is the trust region. A trial step s is computed by
minimizing (or approximately minimizing) over N. This is the trust-region subproblem,

min{q(s), se N}. 6.1)
s 6-1

The current point is updated to be x + s if fix + s) < f(x); otherwise, the current point

remains unchanged and N, the region of trust, is shrunk and the trial step computation is
repeated.

6-2



Unconstrained Nonlinear Optimization Algorithms

The key questions in defining a specific trust-region approach to minimizing f(x) are how
to choose and compute the approximation g (defined at the current point x), how to
choose and modify the trust region N, and how accurately to solve the trust-region
subproblem. This section focuses on the unconstrained problem. Later sections discuss
additional complications due to the presence of constraints on the variables.

In the standard trust-region method ([48]), the quadratic approximation q is defined by
the first two terms of the Taylor approximation to F at x; the neighborhood N is usually
spherical or ellipsoidal in shape. Mathematically the trust-region subproblem is typically
stated

min{lsTHs +sTg such that |Ds|| < A},
2 (6-2)

where g is the gradient of f at the current point x, H is the Hessian matrix (the symmetric
matrix of second derivatives), D is a diagonal scaling matrix, A is a positive scalar, and || .
| is the 2-norm. Good algorithms exist for solving “Equation 6-2” (see [48]); such
algorithms typically involve the computation of a full eigensystem and a Newton process
applied to the secular equation

11
S~ =0.
A s

Such algorithms provide an accurate solution to “Equation 6-2”. However, they require
time proportional to several factorizations of H. Therefore, for large-scale problems a
different approach is needed. Several approximation and heuristic strategies, based on
“Equation 6-2”, have been proposed in the literature ([42] and [50]). The approximation
approach followed in Optimization Toolbox solvers is to restrict the trust-region
subproblem to a two-dimensional subspace S ([39] and [42]). Once the subspace S has
been computed, the work to solve “Equation 6-2” is trivial even if full eigenvalue/
eigenvector information is needed (since in the subspace, the problem is only two-
dimensional). The dominant work has now shifted to the determination of the subspace.

The two-dimensional subspace S is determined with the aid of a preconditioned conjugate
gradient process described below. The solver defines S as the linear space spanned by s;
and s,, where s, is in the direction of the gradient g, and s, is either an approximate
Newton direction, i.e., a solution to
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or a direction of negative curvature,

The philosophy behind this choice of S is to force global convergence (via the steepest
descent direction or negative curvature direction) and achieve fast local convergence (via
the Newton step, when it exists).

A sketch of unconstrained minimization using trust-region ideas is now easy to give:

Formulate the two-dimensional trust-region subproblem.
Solve “Equation 6-2” to determine the trial step s.

If fix +s) <f(x), thenx = x + s.

Adjust A.

A W N R

These four steps are repeated until convergence. The trust-region dimension A is adjusted
according to standard rules. In particular, it is decreased if the trial step is not accepted,
i.e., filx + s) = f(x). See [46] and [49] for a discussion of this aspect.

Optimization Toolbox solvers treat a few important special cases of f with specialized
functions: nonlinear least-squares, quadratic functions, and linear least-squares. However,
the underlying algorithmic ideas are the same as for the general case. These special cases
are discussed in later sections.

Preconditioned Conjugate Gradient Method

A popular way to solve large symmetric positive definite systems of linear equations

Hp = -g is the method of Preconditioned Conjugate Gradients (PCG). This iterative
approach requires the ability to calculate matrix-vector products of the form H-v where v
is an arbitrary vector. The symmetric positive definite matrix M is a preconditioner for H.
That is, M = C?, where C-'HC-! is a well-conditioned matrix or a matrix with clustered
eigenvalues.

In a minimization context, you can assume that the Hessian matrix H is symmetric.
However, H is guaranteed to be positive definite only in the neighborhood of a strong
minimizer. Algorithm PCG exits when a direction of negative (or zero) curvature is
encountered, i.e., dTHd < 0. The PCG output direction, p, is either a direction of negative
curvature or an approximate (tol controls how approximate) solution to the Newton
system Hp = -g. In either case p is used to help define the two-dimensional subspace used
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in the trust-region approach discussed in “Trust-Region Methods for Nonlinear
Minimization” on page 6-2.

fminunc quasi-newton Algorithm
Basics of Unconstrained Optimization

Although a wide spectrum of methods exists for unconstrained optimization, methods can
be broadly categorized in terms of the derivative information that is, or is not, used.
Search methods that use only function evaluations (e.g., the simplex search of Nelder and
Mead [30]) are most suitable for problems that are not smooth or have a number of
discontinuities. Gradient methods are generally more efficient when the function to be
minimized is continuous in its first derivative. Higher order methods, such as Newton's
method, are only really suitable when the second-order information is readily and easily
calculated, because calculation of second-order information, using numerical
differentiation, is computationally expensive.

Gradient methods use information about the slope of the function to dictate a direction of
search where the minimum is thought to lie. The simplest of these is the method of
steepest descent in which a search is performed in a direction, -Vf(x), where Vf(x) is the
gradient of the objective function. This method is very inefficient when the function to be
minimized has long narrow valleys as, for example, is the case for Rosenbrock's function

2
flx)= 100(x2 —x%) +(1-x), (6-5)

The minimum of this function is at x = [1,1], where f(x) = 0. A contour map of this
function is shown in the figure below, along with the solution path to the minimum for a
steepest descent implementation starting at the point [-1.9,2]. The optimization was
terminated after 1000 iterations, still a considerable distance from the minimum. The
black areas are where the method is continually zigzagging from one side of the valley to
another. Note that toward the center of the plot, a number of larger steps are taken when
a point lands exactly at the center of the valley.
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x——

Figure 6-1, Steepest Descent Method on Rosenbrock's Function

This function, also known as the banana function, is notorious in unconstrained examples
because of the way the curvature bends around the origin. Rosenbrock's function is used
throughout this section to illustrate the use of a variety of optimization techniques. The
contours have been plotted in exponential increments because of the steepness of the
slope surrounding the U-shaped valley.

For a more complete description of this figure, including scripts that generate the
iterative points, see “Banana Function Minimization”.

Quasi-Newton Methods

Of the methods that use gradient information, the most favored are the quasi-Newton
methods. These methods build up curvature information at each iteration to formulate a
quadratic model problem of the form

min leHx +clx+ b,
x 2 (6-6)

where the Hessian matrix, H, is a positive definite symmetric matrix, c is a constant
vector, and b is a constant. The optimal solution for this problem occurs when the partial
derivatives of x go to zero, i.e.,
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Vf(x')=Hx +c=0.

The optimal solution point, x*, can be written as

x =-H e (6-8)

Newton-type methods (as opposed to quasi-Newton methods) calculate H directly and
proceed in a direction of descent to locate the minimum after a number of iterations.
Calculating H numerically involves a large amount of computation. Quasi-Newton
methods avoid this by using the observed behavior of f(x) and Vf(x) to build up curvature
information to make an approximation to H using an appropriate updating technique.

A large number of Hessian updating methods have been developed. However, the formula
of Broyden [3], Fletcher [12], Goldfarb [20], and Shanno [37] (BFGS) is thought to be the
most effective for use in a general purpose method.

The formula given by BFGS is

T T T
qrqr _ Hpspsi, Hp,

Hy,=Hp+

b

T T
G sk Sk Hpse (6-9)
where

Sk =Xg+1 —Xp>
ar =Vf (xp+1) - VF (1)

As a starting point, H, can be set to any symmetric positive definite matrix, for example,
the identity matrix I. To avoid the inversion of the Hessian H, you can derive an updating
method that avoids the direct inversion of H by using a formula that makes an
approximation of the inverse Hessian H™! at each update. A well-known procedure is the
DFP formula of Davidon [7], Fletcher, and Powell [14]. This uses the same formula as the
BFGS method (“Equation 6-9”) except that g, is substituted for s;.

The gradient information is either supplied through analytically calculated gradients, or
derived by partial derivatives using a numerical differentiation method via finite
differences. This involves perturbing each of the design variables, X, in turn and
calculating the rate of change in the objective function.



6 Nonlinear algorithms and examples

6-8

At each major iteration, k, a line search is performed in the direction

d=_Hl;1'Vf(xk)- (6-10)

The quasi-Newton method is illustrated by the solution path on Rosenbrock's function in
“Figure 6-2, BFGS Method on Rosenbrock's Function” on page 6-8. The method is able

to follow the shape of the valley and converges to the minimum after 140 function
evaluations using only finite difference gradients.

Figure 6-2, BFGS Method on Rosenbrock's Function

For a more complete description of this figure, including scripts that generate the
iterative points, see “Banana Function Minimization”.

Line Search

Line search is a search method that is used as part of a larger optimization algorithm. At
each step of the main algorithm, the line-search method searches along the line
containing the current point, x,, parallel to the search direction, which is a vector
determined by the main algorithm. That is, the method finds the next iterate x,,; of the
form

Xy = xp +0 dy, (6-11)



Unconstrained Nonlinear Optimization Algorithms

where x; denotes the current iterate, d; is the search direction, and a* is a scalar step
length parameter.

The line search method attempts to decrease the objective function along the line x; +
a*d, by repeatedly minimizing polynomial interpolation models of the objective function.
The line search procedure has two main steps:

The bracketing phase determines the range of points on the line x,; = x;, +& dj, to
be searched. The bracket corresponds to an interval specifying the range of values of
a.

* The sectioning step divides the bracket into subintervals, on which the minimum of the
objective function is approximated by polynomial interpolation.

The resulting step length « satisfies the Wolfe conditions:
f(xk +adk) Sf(xk)+01andek, (6'12)

Vf(xk + adk )T dk > szfdek’ (6'13)

where c; and ¢, are constants with 0 < c¢; < ¢, < 1.

The first condition (“Equation 6-12") requires that a; sufficiently decreases the objective
function. The second condition (“Equation 6-13”) ensures that the step length is not too
small. Points that satisfy both conditions (“Equation 6-12” and “Equation 6-13”) are called
acceptable points.

The line search method is an implementation of the algorithm described in Section 2-6 of
[13]. See also [31] for more information about line search.

Hessian Update

Many of the optimization functions determine the direction of search by updating the
Hessian matrix at each iteration, using the BFGS method (“Equation 6-9”). The function
fminunc also provides an option to use the DFP method given in “Quasi-Newton
Methods” on page 6-6 (set HessUpdate to 'dfp' in options to select the DFP method).
The Hessian, H, is always maintained to be positive definite so that the direction of
search, d, is always in a descent direction. This means that for some arbitrarily small step
a in the direction d, the objective function decreases in magnitude. You achieve positive
definiteness of H by ensuring that H is initialized to be positive definite and thereafter

6-9
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quk (from “Equation 6-14") is always positive. The term quk is a product of the line
search step length parameter a; and a combination of the search direction d with past
and present gradient evaluations,

T T T
qk Sk =0, (Vf (xk+1)" d—Vf (az,) d)' (6-14)

You always achieve the condition that q,zsk is positive by performing a sufficiently
accurate line search. This is because the search direction, d, is a descent direction, so
that a; and the negative gradient -Vf(x,)’d are always positive. Thus, the possible
negative term -Vf(x,,1)7d can be made as small in magnitude as required by increasing
the accuracy of the line search.
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fminsearch Algorithm

fminsearch uses the Nelder-Mead simplex algorithm as described in Lagarias et al. [57].
This algorithm uses a simplex of n + 1 points for n-dimensional vectors x. The algorithm
first makes a simplex around the initial guess x, by adding 5% of each component x,(i) to
Xo, and using these n vectors as elements of the simplex in addition to x,. (It uses 0.00025
as component i if xy(i) = 0.) Then, the algorithm modifies the simplex repeatedly
according to the following procedure.

Note The keywords for the fminsearch iterative display appear in bold after the
description of the step.

Let x(i) denote the list of points in the current simplex, i = 1,...,n+1.

2 Order the points in the simplex from lowest function value f(x(1)) to highest fix(n+1)).
At each step in the iteration, the algorithm discards the current worst point x(n+1),
and accepts another point into the simplex. [Or, in the case of step 7 below, it
changes all n points with values above f(x(1))]

3 Generate the reflected point

r = 2m - x(n+1),
where
m = 2x(i)/n, i = 1...n,

and calculate f(r).

4 If fix(1)) = fr) < f(x(n)), accept r and terminate this iteration. Reflect
If f(r) < f(x(1)), calculate the expansion point s
and calculate f(s).

a Iff(s) < flr), accept s and terminate the iteration. Expand
b  Otherwise, accept r and terminate the iteration. Reflect
6 If f{r) = f(x(n)), perform a contraction between m and the better of x(n+1) and r:

6-11
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a Iff(r) < fx(n+1)) (i.e., ris better than x(n+1)), calculate

c = m + (r - m)/2

and calculate f(c). If f(c) < f(r), accept ¢ and terminate the iteration. Contract
outside Otherwise, continue with Step 7 (Shrink).

b If f{r) = f(x(n+1)), calculate
cc = m + (x(n+1) - m)/2

and calculate fl(cc). If flcc) < fix(n+1)), accept cc and terminate the iteration.
Contract inside Otherwise, continue with Step 7 (Shrink).

Calculate the n points
v(i) = x(1) + (x() - x(1))/2

and calculate f(v(i)), i = 2,...,n+1. The simplex at the next iteration is x(1), v(2),...,v(n
+1). Shrink

The following figure shows the points that fminsearch might calculate in the procedure,
along with each possible new simplex. The original simplex has a bold outline. The
iterations proceed until they meet a stopping criterion.

x(n+1)
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fminunc Unconstrained Minimization

Consider the problem of finding a set of values [x;, x,] that solves

min f(x) = €™ (4x% +2x2 +4x;xg + 2%y + 1).
* (6-15)

To solve this two-dimensional problem, write a file that returns the function value. Then,
invoke the unconstrained minimization routine fminunc.
Step 1: Write a file objfun.m.

This code ships with the toolbox. To view, enter type objfun:
function f = objfun(x)
f = exp(x(l)) * (4*%x(1)"2 + 2*x(2)"2 + 4*x(1)*x(2) + 2*x(2) + 1);

Step 2: Set options.

Set options to use the 'quasi-newton' algorithm. Set options because the 'trust-
region' algorithm requires that the objective function include a gradient. If you do not
set the options, then, depending on your MATLAB version, fminunc can issue a warning.

options = optimoptions(@fminunc, 'Algorithm', 'quasi-newton');

Step 3: Invoke fminunc using the options.

x0 = [-1,1]; % Starting guess
[x,fval,exitflag,output] = fminunc(@objfun,x0,options);

This produces the following output:
Local minimum found.

Optimization completed because the size of the gradient is less
than the default value of the optimality tolerance.

View the results, including the first-order optimality measure in the output structure.

x,fval,exitflag,output.firstorderopt

6-13



6 Nonlinear algorithms and examples

6-14

0.5000 -1.0000

fval =

3.6609e-16

exitflag =

1

ans =

7.3704e-08

The exitflag tells whether the algorithm converged. exitflag = 1 means a local
minimum was found. The meanings of exitflags are given in function reference pages.

The output structure gives more details about the optimization. For fminunc, it includes
the number of iterations in iterations, the number of function evaluations in
funcCount, the final step-size in stepsize, a measure of first-order optimality (which in
this unconstrained case is the infinity norm of the gradient at the solution) in
firstorderopt, the type of algorithm used in algorithm, and the exit message (the
reason the algorithm stopped).

See Also

Related Examples

. “Minimization with Gradient and Hessian” on page 6-15

More About
. “Set Options”

. “Solver Outputs and Iterative Display”
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Minimization with Gradient and Hessian

This example shows how to solve a nonlinear minimization problem with an explicit
tridiagonal Hessian matrix H(x).

The problem is to find x to minimize

n-1

=3 (xiz)(xiﬁl)+(xiz+1)(xf+1)}

i (6-16)

where n = 1000.

Step 1: Write a file brownfgh.m that computes the objective
function, the gradient of the objective, and the sparse
tridiagonal Hessian matrix.

The file is lengthy so is not included here. View the code with the command

type brownfgh

Because brownfgh computes the gradient and Hessian values as well as the objective
function, you need to use optimoptions to indicate that this information is available in
brownfgh, using the SpecifyObjectiveGradient and HessianFcn options.

Step 2: Call a nonlinear minimization routine with a starting
point xstart.

n = 1000;

xstart = -ones(n,1l);

xstart(2:2:n,1) = 1;

options = optimoptions(@fminunc, 'Algorithm', 'trust-region’, ...
'SpecifyObjectiveGradient', true, 'HessianFcn', 'objective');

[x,fval,exitflag,output] = fminunc(@brownfgh,xstart,options);

This 1000 variable problem is solved in about 7 iterations and 7 conjugate gradient
iterations with a positive exitflag indicating convergence. The final function value and
measure of optimality at the solution x are both close to zero. For fminunc, the first
order optimality is the infinity norm of the gradient of the function, which is zero at a
local minimum:

6-15
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fval,exitflag,output.firstorderopt
fval =

2.8709e-17

exitflag =

1

ans =

4.7948e-10

See Also

Related Examples
. “Minimization with Gradient and Hessian Sparsity Pattern” on page 6-17

6-16
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Minimization with Gradient and Hessian Sparsity
Pattern

This example shows how to solve a nonlinear minimization problem with tridiagonal
Hessian matrix approximated by sparse finite differences instead of explicit computation.

The problem is to find x to minimize
n-1 (xl+1+1) (xi2+1)
fo= 3\ (=) +(xka)
i=1

where n = 1000.

To use the trust-region method in fminunc, you must compute the gradient in fun; it
is not optional as in the quasi-newton method.

The brownfg file computes the objective function and gradient.
Step 1: Write a file brownfg.m that computes the objective
function and the gradient of the objective.

This function file ships with your software.

function [f,g] = brownfg(x)
% BROWNFG Nonlinear minimization test problem

o o°

Evaluate the function
length(x); y=zeros(n,1l);
1:(n-1);
1)=(x(1).72) .M (x(i+1).72+1) + ...
(x(i+1).72) .7 (x(1).72+1);
f=sum(y);
% Evaluate the gradient if nargout > 1
if nargout > 1
i=1l:(n-1); g = zeros(n,1);
g(i) = 2*%(x(i+1).72+1) .*x(1i).* ...

n=
l:
y(

((x(1i).72) .M (x(i+1).72))+ ...
2%x (1) . *((x(i+1).72) .M (x(1).72+]1)) .*
log(x(i+l).72);

g(i+l) = g(i+l) + .

6-17
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26X (1+1) X ((x(1).72) .M (x(i+1).72+1)) .* ...
log(x(1i).72) + ...

2%(x (1) .7241) . *x(i+1) .* ...
((x(i+1).72) .~ (x(1).72));

end

To allow efficient computation of the sparse finite-difference approximation of the Hessian
matrix H(x), the sparsity structure of H must be predetermined. In this case assume this
structure, Hstr, a sparse matrix, is available in file brownhstr.mat. Using the spy
command you can see that Hstr is indeed sparse (only 2998 nonzeros). Use
optimoptions to set the HessPattern option to Hstr. When a problem as large as this
has obvious sparsity structure, not setting the HessPattern option requires a huge
amount of unnecessary memory and computation because fminunc attempts to use finite
differencing on a full Hessian matrix of one million nonzero entries.

You must also set the SpecifyObjectiveGradient option to true using
optimoptions, since the gradient is computed in brownfg.m. Then execute fminunc as
shown in Step 2.

Step 2: Call a nonlinear minimization routine with a starting
point xstart.
fun = @brownfg;

load brownhstr % Get Hstr, structure of the Hessian
spy(Hstr) % View the sparsity structure of Hstr
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n = 1000;

xstart = -ones(n,1l);

xstart(2:2:n,1) = 1;

options = optimoptions(@fminunc, 'Algorithm', 'trust-region’', ...
'SpecifyObjectiveGradient', true, 'HessPattern', Hstr);

[x,fval,exitflag,output] = fminunc(fun,xstart,options);

This 1000-variable problem is solved in seven iterations and seven conjugate gradient
iterations with a positive exitflag indicating convergence. The final function value and
measure of optimality at the solution x are both close to zero (for fminunc, the first-order
optimality is the infinity norm of the gradient of the function, which is zero at a local
minimum):

6-19
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exitflag, fval,output.firstorderopt
exitflag =

1

fval =

7.4738e-17

ans =

7.9822e-10

See Also

Related Examples

. “Minimization with Gradient and Hessian” on page 6-15
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Constrained Nonlinear Optimization Algorithms

In this section...

“Constrained Optimization Definition” on page 6-21
“fmincon Trust Region Reflective Algorithm” on page 6-21
“fmincon Active Set Algorithm” on page 6-26

“fmincon SQP Algorithm” on page 6-36

“fmincon Interior Point Algorithm” on page 6-37

“fminbnd Algorithm” on page 6-41

“fseminf Problem Formulation and Algorithm” on page 6-41

Constrained Optimization Definition

Constrained minimization is the problem of finding a vector x that is a local minimum to a
scalar function f(x) subject to constraints on the allowable x:

min f(x)

such that one or more of the following holds: c(x) = 0, ceq(x) = 0, A-x = b, Aeq'x = begq,
[ = x = u. There are even more constraints used in semi-infinite programming; see
“fseminf Problem Formulation and Algorithm” on page 6-41.

fmincon Trust Region Reflective Algorithm
Trust-Region Methods for Nonlinear Minimization

Many of the methods used in Optimization Toolbox solvers are based on trust regions, a
simple yet powerful concept in optimization.

To understand the trust-region approach to optimization, consider the unconstrained
minimization problem, minimize f(x), where the function takes vector arguments and
returns scalars. Suppose you are at a point x in n-space and you want to improve, i.e.,
move to a point with a lower function value. The basic idea is to approximate f with a
simpler function g, which reasonably reflects the behavior of function f'in a neighborhood
N around the point x. This neighborhood is the trust region. A trial step s is computed by
minimizing (or approximately minimizing) over N. This is the trust-region subproblem,

6-21
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min{q(s), se N}. (6-17)

The current point is updated to be x + s if fix + s) < f(x); otherwise, the current point
remains unchanged and N, the region of trust, is shrunk and the trial step computation is
repeated.

The key questions in defining a specific trust-region approach to minimizing f(x) are how
to choose and compute the approximation g (defined at the current point x), how to
choose and modify the trust region N, and how accurately to solve the trust-region
subproblem. This section focuses on the unconstrained problem. Later sections discuss
additional complications due to the presence of constraints on the variables.

In the standard trust-region method ([48]), the quadratic approximation q is defined by
the first two terms of the Taylor approximation to F at x; the neighborhood N is usually
spherical or ellipsoidal in shape. Mathematically the trust-region subproblem is typically
stated

min{lsTHs +sTg such that |Ds| < A},
2 (6-18)

where g is the gradient of f at the current point x, H is the Hessian matrix (the symmetric
matrix of second derivatives), D is a diagonal scaling matrix, A is a positive scalar, and || .
| is the 2-norm. Good algorithms exist for solving “Equation 6-18” (see [48]); such
algorithms typically involve the computation of a full eigensystem and a Newton process
applied to the secular equation

11
S~ =0.
Al

Such algorithms provide an accurate solution to “Equation 6-18”. However, they require
time proportional to several factorizations of H. Therefore, for large-scale problems a
different approach is needed. Several approximation and heuristic strategies, based on
“Equation 6-18”, have been proposed in the literature ([42] and [50]). The approximation
approach followed in Optimization Toolbox solvers is to restrict the trust-region
subproblem to a two-dimensional subspace S ([39] and [42]). Once the subspace S has
been computed, the work to solve “Equation 6-18” is trivial even if full eigenvalue/
eigenvector information is needed (since in the subspace, the problem is only two-
dimensional). The dominant work has now shifted to the determination of the subspace.
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The two-dimensional subspace S is determined with the aid of a preconditioned conjugate
gradient process described below. The solver defines S as the linear space spanned by s;
and s,, where s; is in the direction of the gradient g, and s, is either an approximate
Newton direction, i.e., a solution to

H-sy =-8, (6-19)

or a direction of negative curvature,
T
sy - H 559 <0. (6-20)

The philosophy behind this choice of S is to force global convergence (via the steepest
descent direction or negative curvature direction) and achieve fast local convergence (via
the Newton step, when it exists).

A sketch of unconstrained minimization using trust-region ideas is now easy to give:

Formulate the two-dimensional trust-region subproblem.
Solve “Equation 6-18” to determine the trial step s.

If fix +s) <f(x), thenx = x + s.

Adjust A.

A W N R

These four steps are repeated until convergence. The trust-region dimension A is adjusted
according to standard rules. In particular, it is decreased if the trial step is not accepted,
i.e., flx + s) = f(x). See [46] and [49] for a discussion of this aspect.

Optimization Toolbox solvers treat a few important special cases of f with specialized
functions: nonlinear least-squares, quadratic functions, and linear least-squares. However,
the underlying algorithmic ideas are the same as for the general case. These special cases
are discussed in later sections.

Preconditioned Conjugate Gradient Method

A popular way to solve large symmetric positive definite systems of linear equations

Hp = -g is the method of Preconditioned Conjugate Gradients (PCG). This iterative
approach requires the ability to calculate matrix-vector products of the form H-v where v
is an arbitrary vector. The symmetric positive definite matrix M is a preconditioner for H.
That is, M = C?, where C-'HC-! is a well-conditioned matrix or a matrix with clustered
eigenvalues.
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In a minimization context, you can assume that the Hessian matrix H is symmetric.
However, H is guaranteed to be positive definite only in the neighborhood of a strong
minimizer. Algorithm PCG exits when a direction of negative (or zero) curvature is
encountered, i.e., dTHd < 0. The PCG output direction, p, is either a direction of negative
curvature or an approximate (tol controls how approximate) solution to the Newton
system Hp = -g. In either case p is used to help define the two-dimensional subspace used
in the trust-region approach discussed in “Trust-Region Methods for Nonlinear
Minimization” on page 6-2.

Linear Equality Constraints

Linear constraints complicate the situation described for unconstrained minimization.
However, the underlying ideas described previously can be carried through in a clean and
efficient way. The trust-region methods in Optimization Toolbox solvers generate strictly
feasible iterates.

The general linear equality constrained minimization problem can be written

min{f(x) such that Ax =0}, (6-21)

where A is an m-by-n matrix (m < n). Some Optimization Toolbox solvers preprocess A to
remove strict linear dependencies using a technique based on the LU factorization of AT
[46]. Here A is assumed to be of rank m.

The method used to solve “Equation 6-21” differs from the unconstrained approach in two
significant ways. First, an initial feasible point x; is computed, using a sparse least-
squares step, so that Ax, = b. Second, Algorithm PCG is replaced with Reduced
Preconditioned Conjugate Gradients (RPCG), see [46], in order to compute an
approximate reduced Newton step (or a direction of negative curvature in the null space
of A). The key linear algebra step involves solving systems of the form

JLo} o2

where A approximates A (small nonzeros of A are set to zero provided rank is not lost)
and C is a sparse symmetric positive-definite approximation to H, i.e., C = H. See [46] for
more details.

c AT
A 0
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Box Constraints

The box constrained problem is of the form

min{/f(x) such that [ <x <u}, (6-23)

where [ is a vector of lower bounds, and u is a vector of upper bounds. Some (or all) of the
components of I can be equal to -« and some (or all) of the components of u can be equal
to «. The method generates a sequence of strictly feasible points. Two techniques are
used to maintain feasibility while achieving robust convergence behavior. First, a scaled
modified Newton step replaces the unconstrained Newton step (to define the two-
dimensional subspace S). Second, reflections are used to increase the step size.

The scaled modified Newton step arises from examining the Kuhn-Tucker necessary
conditions for “Equation 6-23”,

-2
(D(x))“ g =0, (6-24)

where
D(w) = diag(jog ),

and the vector v(x) is defined below, foreach 1 <i < n:
 Ifgi<0andu; < »thenv,=x-u;

» Ifgi=0andl; > - thenv,; =x; - |

e Ifgi<Oanduy; = »thenv,=-1

e Ifgi=0and/;=-othenv;=1

The nonlinear system “Equation 6-24” is not differentiable everywhere.
Nondifferentiability occurs when v; = 0. You can avoid such points by maintaining strict
feasibility, i.e., restricting I < x < u.

The scaled modified Newton step s; for the nonlinear system of equations given by
“Equation 6-24” is defined as the solution to the linear system

(6-25)
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at the kth iteration, where

g=D7g= diag(lvll/z)g,
(6-26)

and
o n-lrrp-1, a: v
M =D "HD + diag(g)J". (6-27)

Here JV plays the role of the Jacobian of |v|. Each diagonal component of the diagonal
matrix JV equals 0, -1, or 1. If all the components of I and u are finite, J¥ = diag(sign(g)). At

a point where g; = 0, v; might not be differentiable. J;; =0 is defined at such a point.
Nondifferentiability of this type is not a cause for concern because, for such a component,
it is not significant which value v; takes. Further, |v;| will still be discontinuous at this
point, but the function |v|-g; is continuous.

Second, reflections are used to increase the step size. A (single) reflection step is defined
as follows. Given a step p that intersects a bound constraint, consider the first bound
constraint crossed by p; assume it is the ith bound constraint (either the ith upper or ith
lower bound). Then the reflection step p® = p except in the ith component, where pk; = -

pi-.

fmincon Active Set Algorithm
Introduction

In constrained optimization, the general aim is to transform the problem into an easier
subproblem that can then be solved and used as the basis of an iterative process. A
characteristic of a large class of early methods is the translation of the constrained
problem to a basic unconstrained problem by using a penalty function for constraints that
are near or beyond the constraint boundary. In this way the constrained problem is solved
using a sequence of parametrized unconstrained optimizations, which in the limit (of the
sequence) converge to the constrained problem. These methods are now considered
relatively inefficient and have been replaced by methods that have focused on the solution
of the Karush-Kuhn-Tucker (KKT) equations. The KKT equations are necessary conditions
for optimality for a constrained optimization problem. If the problem is a so-called convex
programming problem, that is, f(x) and G;(x), i = 1,...,m, are convex functions, then the
KKT equations are both necessary and sufficient for a global solution point.
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Referring to GP (“Equation 2-1”), the Kuhn-Tucker equations can be stated as

Vf(x*)+§/ll VG;(x")=0
=1
A .Gi(x*)zo, i1=1..,m,
A 20, i=m,+1,..,m, (6-28)

in addition to the original constraints in “Equation 2-1".

The first equation describes a canceling of the gradients between the objective function
and the active constraints at the solution point. For the gradients to be canceled,
Lagrange multipliers (4;, i = 1,...,m) are necessary to balance the deviations in magnitude
of the objective function and constraint gradients. Because only active constraints are
included in this canceling operation, constraints that are not active must not be included
in this operation and so are given Lagrange multipliers equal to 0. This is stated implicitly
in the last two Kuhn-Tucker equations.

The solution of the KKT equations forms the basis to many nonlinear programming
algorithms. These algorithms attempt to compute the Lagrange multipliers directly.
Constrained quasi-Newton methods guarantee superlinear convergence by accumulating
second-order information regarding the KKT equations using a quasi-Newton updating
procedure. These methods are commonly referred to as Sequential Quadratic
Programming (SQP) methods, since a QP subproblem is solved at each major iteration
(also known as Iterative Quadratic Programming, Recursive Quadratic Programming, and
Constrained Variable Metric methods).

The 'active-set' algorithm is not a large-scale algorithm; see “Large-Scale vs.
Medium-Scale Algorithms” on page 2-14.

Sequential Quadratic Programming (SQP)

SQP methods represent the state of the art in nonlinear programming methods.
Schittkowski [36], for example, has implemented and tested a version that outperforms
every other tested method in terms of efficiency, accuracy, and percentage of successful
solutions, over a large number of test problems.

Based on the work of Biggs [1], Han [22], and Powell ([32] and [33]), the method allows
you to closely mimic Newton's method for constrained optimization just as is done for
unconstrained optimization. At each major iteration, an approximation is made of the
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Hessian of the Lagrangian function using a quasi-Newton updating method. This is then
used to generate a QP subproblem whose solution is used to form a search direction for a
line search procedure. An overview of SQP is found in Fletcher [13], Gill et al. [19],
Powell [35], and Schittkowski [23]. The general method, however, is stated here.

Given the problem description in GP (“Equation 2-1") the principal idea is the formulation
of a QP subproblem based on a quadratic approximation of the Lagrangian function.

Lx,A) = f@) + Y % - g ().
i=1 (6-29)

Here you simplify “Equation 2-1” by assuming that bound constraints have been
expressed as inequality constraints. You obtain the QP subproblem by linearizing the
nonlinear constraints.

Quadratic Programming (QP) Subproblem

. 1.7 T
min=d" H,d+Vf(x d
deR™ 2 k f( k)

Vg; (x, )T d+g;(x,)=0, i=1,...m,
Vg (x,) d+g; (%) <0, i=m, +1,...,m. 630

This subproblem can be solved using any QP algorithm (see, for instance, “Quadratic
Programming Solution” on page 6-31). The solution is used to form a new iterate

Xk + 1 = Xk + o dy.

The step length parameter a; is determined by an appropriate line search procedure so
that a sufficient decrease in a merit function is obtained (see “Updating the Hessian
Matrix” on page 6-30). The matrix H, is a positive definite approximation of the Hessian
matrix of the Lagrangian function (“Equation 6-29”). Hy can be updated by any of the
quasi-Newton methods, although the BFGS method (see “Updating the Hessian Matrix”
on page 6-30) appears to be the most popular.

A nonlinearly constrained problem can often be solved in fewer iterations than an
unconstrained problem using SQP. One of the reasons for this is that, because of limits on
the feasible area, the optimizer can make informed decisions regarding directions of
search and step length.
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Consider Rosenbrock's function with an additional nonlinear inequality constraint, g(x),

2 2
xl +.7C2 -1.5<0. (6'31)

This was solved by an SQP implementation in 96 iterations compared to 140 for the
unconstrained case. “Figure 6-3, SQP Method on Nonlinearly Constrained Rosenbrock's
Function” on page 6-29 shows the path to the solution point x = [0.9072,0.8228] starting
at x =[-1.9,2.0].

0

Figure 6-3, SQP Method on Nonlinearly Constrained Rosenbrock's Function
SQP Implementation

The SQP implementation consists of three main stages, which are discussed briefly in the
following subsections:

» “Updating the Hessian Matrix” on page 6-30

* “Quadratic Programming Solution” on page 6-31

* “Initialization” on page 6-34

* “Line Search and Merit Function” on page 6-35
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Updating the Hessian Matrix

At each major iteration a positive definite quasi-Newton approximation of the Hessian of
the Lagrangian function, H, is calculated using the BFGS method, where 4;,i = 1,...,m, is
an estimate of the Lagrange multipliers.

T T 5T
qrqr  Hpspsp Hp,
Hk+1 = Hk + - >

T T
dp Sg sy, Hysp, (6-32)

where
Sp = Xp+1 —Xp

qr = Vf(xk+1)+§,ﬂ¢ 'Vgi(xk+1)]—[vf(xk)+iﬂi Vg (xz) |

i=1 i=1

Powell [33] recommends keeping the Hessian positive definite even though it might be
positive indefinite at the solution point. A positive definite Hessian is maintained

providing q,{sk is positive at each update and that H is initialized with a positive definite
matrix. When q,fsk is not positive, g is modified on an element-by-element basis so that

qgsk >0 . The general aim of this modification is to distort the elements of g, which
contribute to a positive definite update, as little as possible. Therefore, in the initial phase
of the modification, the most negative element of g,*s; is repeatedly halved. This

procedure is continued until q,:fsk is greater than or equal to a small negative tolerance.

If, after this procedure, ql:eFSk is still not positive, modify g, by adding a vector v
multiplied by a constant scalar w, that is,

qk :qk +wv, (6'33)
where

v; = Vg (%e11) 8 (%n+1)— Vai () gi ()
if (q;), w<0and (q;),(s); <0, i=1...m

v; =0 otherwise,
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and increase w systematically until q,fsk becomes positive.

The functions fmincon, fminimax, fgoalattain, and fseminf all use SQP. If Display
issetto 'iter' in options, then various information is given such as function values
and the maximum constraint violation. When the Hessian has to be modified using the
first phase of the preceding procedure to keep it positive definite, then Hessian
modified is displayed. If the Hessian has to be modified again using the second phase of
the approach described above, then Hessian modified twice is displayed. When the
QP subproblem is infeasible, then infeasible is displayed. Such displays are usually not
a cause for concern but indicate that the problem is highly nonlinear and that
convergence might take longer than usual. Sometimes the message no update is

displayed, indicating that q,fsk is nearly zero. This can be an indication that the problem
setup is wrong or you are trying to minimize a noncontinuous function.

Quadratic Programming Solution

At each major iteration of the SQP method, a QP problem of the following form is solved,
where A; refers to the ith row of the m-by-n matrix A.

min g(d) = 1dTHal +cld,
deR" 2
Ald = bL’ i= 1,..., m,

Ad<b, i=m,+1,..,m. (6-34)

The method used in Optimization Toolbox functions is an active set strategy (also known
as a projection method) similar to that of Gill et al., described in [18] and [17]. It has been
modified for both Linear Programming (LP) and Quadratic Programming (QP) problems.

The solution procedure involves two phases. The first phase involves the calculation of a
feasible point (if one exists). The second phase involves the generation of an iterative
sequence of feasible points that converge to the solution. In this method an active set,

A, , is maintained that is an estimate of the active constraints (i.e., those that are on the
constraint boundaries) at the solution point. Virtually all QP algorithms are active set
methods. This point is emphasized because there exist many different methods that are
very similar in structure but that are described in widely different terms.
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A, is updated at each iteration k, and this is used to form a basis for a search direction
3k . Equality constraints always remain in the active set A, . The notation for the variable
cAlk is used here to distinguish it from d, in the major iterations of the SQP method. The
search direction &k is calculated and minimizes the objective function while remaining on
any active constraint boundaries. The feasible subspace for &k is formed from a basis Z;
whose columns are orthogonal to the estimate of the active set A, (i.e., A,Z, =0). Thus
a search direction, which is formed from a linear summation of any combination of the
columns of Z;, is guaranteed to remain on the boundaries of the active constraints.

The matrix Z; is formed from the last m - I columns of the QR decomposition of the matrix

A,? , where I is the number of active constraints and [ < m. That is, Zj is given by

Zy, =Q[:,l+1:m], (6-35)
where
7 _|B
[}

Once Z; is found, a new search direction &k is sought that minimizes g(d) where &k isin
the null space of the active constraints. That is, dj, is a linear combination of the columns

of Zy: dj = Z,p for some vector p.

Then if you view the quadratic as a function of p, by substituting for &k , you have

1 7.7 T
q(p)=-p" Zp HZpp+c Zyp.
2 (6-36)

Differentiating this with respect to p yields
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Va(p)=Z} HZyp+Zj c. (6-37)

Vq(p) is referred to as the projected gradient of the quadratic function because it is the

gradient projected in the subspace defined by Z,. The term Z,Z HZ,, is called the
projected Hessian. Assuming the Hessian matrix H is positive definite (which is the case
in this implementation of SQP), then the minimum of the function g(p) in the subspace
defined by Z; occurs when Vq(p) = 0, which is the solution of the system of linear
equations

T T

A step is then taken of the form
Xpe1 = Xp +(X(zk, where Czk = ka (6'39)

At each iteration, because of the quadratic nature of the objective function, there are only
two choices of step length a. A step of unity along &k is the exact step to the minimum of

the function restricted to the null space of Zlk . If such a step can be taken, without
violation of the constraints, then this is the solution to QP (“Equation 6-34"). Otherwise,

the step along c?k to the nearest constraint is less than unity and a new constraint is
included in the active set at the next iteration. The distance to the constraint boundaries

in any direction &k is given by
o= min {M} ,

ie{l,m} | Ayd, (6-40)

which is defined for constraints not in the active set, and where the direction &k is
towards the constraint boundary, i.e., Ai&k >0,i=1..,m.

When n independent constraints are included in the active set, without location of the
minimum, Lagrange multipliers, 4,, are calculated that satisfy the nonsingular set of
linear equations
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=T _

If all elements of A, are positive, x is the optimal solution of QP (“Equation 6-34”).
However, if any component of 4; is negative, and the component does not correspond to
an equality constraint, then the corresponding element is deleted from the active set and
a new iterate is sought.

Initialization

The algorithm requires a feasible point to start. If the current point from the SQP method
is not feasible, then you can find a point by solving the linear programming problem

min ¥ such that

yeR, xeR”
Aix :bl’ i=1,...,me
Ax—-y<b, i=m,+1,..,m. (6-42)

The notation A; indicates the ith row of the matrix A. You can find a feasible point (if one
exists) to “Equation 6-42” by setting x to a value that satisfies the equality constraints.
You can determine this value by solving an under- or overdetermined set of linear
equations formed from the set of equality constraints. If there is a solution to this
problem, then the slack variable y is set to the maximum inequality constraint at this
point.

You can modify the preceding QP algorithm for LP problems by setting the search

direction to the steepest descent direction at each iteration, where gy is the gradient of
the objective function (equal to the coefficients of the linear objective function).

5 T
dk =—Zka gk. (6'43)
If a feasible point is found using the preceding LP method, the main QP phase is entered.

The search direction dj, is initialized with a search direction d; found from solving the
set of linear equations

Hd, =g, (6-44)

where g, is the gradient of the objective function at the current iterate x; (i.e., Hx; + c).
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If a feasible solution is not found for the QP problem, the direction of search for the main

SQP routine dj, is taken as one that minimizes y.

Line Search and Merit Function

The solution to the QP subproblem produces a vector d, which is used to form a new
iterate

Xp41 = Xp O (6-45)
The step length parameter a; is determined in order to produce a sufficient decrease in a

merit function. The merit function used by Han [22] and Powell [33] of the following form
is used in this implementation.

Y= 0+ r-g@+ Y 1-max(0,g;(x)l
i=1 i=m,+1 (6'46)

Powell recommends setting the penalty parameter

r= (’k+1)i = m_ax{/'lvi,(rk)iT-’-ﬁi}, i=1,..,m.
l (6-47)

This allows positive contribution from constraints that are inactive in the QP solution but
were recently active. In this implementation, the penalty parameter r; is initially set to

_ M)
ri = ,
[Ve; )] (6-48)

where | || represents the Euclidean norm.
This ensures larger contributions to the penalty parameter from constraints with smaller

gradients, which would be the case for active constraints at the solution point.
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fmincon SQP Algorithm

The sqgp algorithm (and nearly identical sqp-legacy algorithm) is similar to the
active-set algorithm (for a description, see “fmincon Active Set Algorithm” on page 6-
26). The basic sqp algorithm is described in Chapter 18 of Nocedal and Wright [31].

The sqp algorithm is essentially the same as the sqp-legacy algorithm, but has a
different implementation. Usually, sqp has faster execution time and less memory usage
than sqp-legacy.

The most important differences between the sqp and the active-set algorithms are:
Strict Feasibility With Respect to Bounds

The sqp algorithm takes every iterative step in the region constrained by bounds.
Furthermore, finite difference steps also respect bounds. Bounds are not strict; a step can
be exactly on a boundary. This strict feasibility can be beneficial when your objective
function or nonlinear constraint functions are undefined or are complex outside the
region constrained by bounds.

Robustness to Non-Double Results

During its iterations, the sqp algorithm can attempt to take a step that fails. This means
an objective function or nonlinear constraint function you supply returns a value of Inf,
NaN, or a complex value. In this case, the algorithm attempts to take a smaller step.

Refactored Linear Algebra Routines

The sqgp algorithm uses a different set of linear algebra routines to solve the quadratic
programming subproblem, “Equation 6-30”. These routines are more efficient in both
memory usage and speed than the active-set routines.

Reformulated Feasibility Routines

The sqgp algorithm has two new approaches to the solution of “Equation 6-30” when
constraints are not satisfied.

* The sqgp algorithm combines the objective and constraint functions into a merit
function. The algorithm attempts to minimize the merit function subject to relaxed
constraints. This modified problem can lead to a feasible solution. However, this
approach has more variables than the original problem, so the problem size in
“Equation 6-30” increases. The increased size can slow the solution of the subproblem.
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These routines are based on the articles by Spellucci [60] and Tone [61]. The sqp
algorithm sets the penalty parameter for the merit function “Equation 6-46” according
to the suggestion in [41].

* Suppose nonlinear constraints are not satisfied, and an attempted step causes the
constraint violation to grow. The sqp algorithm attempts to obtain feasibility using a
second-order approximation to the constraints. The second-order technique can lead
to a feasible solution. However, this technique can slow the solution by requiring more
evaluations of the nonlinear constraint functions.

fmincon Interior Point Algorithm
Barrier Function

The interior-point approach to constrained minimization is to solve a sequence of
approximate minimization problems. The original problem is

min f(x), subject to A(x) =0 and g(x) < 0.
x (6-49)

For each u1 > 0, the approximate problem is

min f,, (x,s) = min f(x) —,uzln (s;), subject to h(x) =0 and g(x)+s=0.
x,8 x,8 E (6-50)

There are as many slack variables s; as there are inequality constraints g. The s; are
restricted to be positive to keep In(s;) bounded. As p1 decreases to zero, the minimum of f,
should approach the minimum of f. The added logarithmic term is called a barrier
function. This method is described in [40], [41], and [51].

The approximate problem “Equation 6-50” is a sequence of equality constrained
problems. These are easier to solve than the original inequality-constrained problem
“Equation 6-49”.

To solve the approximate problem, the algorithm uses one of two main types of steps at
each iteration:

* Adirect step in (x, s). This step attempts to solve the KKT equations, “Equation 3-2”
and “Equation 3-3”, for the approximate problem via a linear approximation. This is
also called a Newton step.
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* A CG (conjugate gradient) step, using a trust region.

By default, the algorithm first attempts to take a direct step. If it cannot, it attempts a CG
step. One case where it does not take a direct step is when the approximate problem is
not locally convex near the current iterate.

At each iteration the algorithm decreases a merit function, such as

£ (x,8)+ v |(Ax), g(2) + ).

The parameter v may increase with iteration number in order to force the solution
towards feasibility. If an attempted step does not decrease the merit function, the
algorithm rejects the attempted step, and attempts a new step.

If either the objective function or a nonlinear constraint function returns a complex value,
NaN, Inf, or an error at an iterate x;, the algorithm rejects x;. The rejection has the same
effect as if the merit function did not decrease sufficiently: the algorithm then attempts a
different, shorter step. Wrap any code that can error in try-catch:

function val = userFcn(x)
try
val = ... % code that can error
catch
val
end

NaN;

The objective and constraints must yield proper (double) values at the initial point.
Direct Step

The following variables are used in defining the direct step:

* H denotes the Hessian of the Lagrangian of f,;:

H=Vf(x)+ Y AVg(x)+ D AV?h; ().
! J (6-51)

* ], denotes the Jacobian of the constraint function g.

* J, denotes the Jacobian of the constraint function h.

+ S = diag(s).
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* A denotes the Lagrange multiplier vector associated with constraints g
+ A =diag(a).

* ydenotes the Lagrange multiplier vector associated with h.

* e denote the vector of ones the same size as g.

“Equation 6-52” defines the direct step (Ax, As):

H o Jf J7 & Vf —Jiy-JLA
0 SA 0 -S| As|_ SA— ue
J, 0 I 0 |-a| h

J, =S 0 I |[-A1 g+s

(6-52)

This equation comes directly from attempting to solve “Equation 3-2” and “Equation 3-3”
using a linearized Lagrangian.

In order to solve this equation for (Ax, As), the algorithm makes an LDL factorization of
the matrix. (See Example 3 — The Structure of D (MATLAB) in the MATLAB 1d1 function
reference page.) This is the most computationally expensive step. One result of this
factorization is a determination of whether the projected Hessian is positive definite or
not; if not, the algorithm uses a conjugate gradient step, described in the next section.

Conjugate Gradient Step

The conjugate gradient approach to solving the approximate problem “Equation 6-50” is
similar to other conjugate gradient calculations. In this case, the algorithm adjusts both x
and s, keeping the slacks s positive. The approach is to minimize a quadratic
approximation to the approximate problem in a trust region, subject to linearized
constraints.

Specifically, let R denote the radius of the trust region, and let other variables be defined
as in “Direct Step” on page 6-38. The algorithm obtains Lagrange multipliers by
approximately solving the KKT equations

VL=V, fx)+> 4Vgi(x)+ D y;Vh;(x) =0,
i J

in the least-squares sense, subject to A being positive. Then it takes a step (Ax, As) to
approximately solve
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min V£7T Ax + leTVfoLAx +ueTSas+ L asTS Ans,
Ax,As 2 2 (6-53)

subject to the linearized constraints

8x)+JgAx +As =0, h(x)+dJpAx =0. (6-54)

To solve “Equation 6-54”, the algorithm tries to minimize a norm of the linearized
constraints inside a region with radius scaled by R. Then “Equation 6-53” is solved with
the constraints being to match the residual from solving “Equation 6-54”, staying within
the trust region of radius R, and keeping s strictly positive. For details of the algorithm
and the derivation, see [40], [41], and [51]. For another description of conjugate
gradients, see “Preconditioned Conjugate Gradient Method” on page 6-23.

Interior-Point Algorithm Options
Here are the meanings and effects of several options in the interior-point algorithm.

* HonorBounds — When set to true, every iterate satisfies the bound constraints you
have set. When set to false, the algorithm may violate bounds during intermediate
iterations.

* HessianApproximation — When set to:

* 'bfgs', fmincon calculates the Hessian by a dense quasi-Newton approximation.

+ 'lbfgs', fmincon calculates the Hessian by a limited-memory, large-scale quasi-
Newton approximation.

« 'fin-diff-grads', fmincon calculates a Hessian-times-vector product by finite
differences of the gradient(s); other options need to be set appropriately.

* HessianFcn — fmincon uses the function handle you specify in HessianFcn to
compute the Hessian. See “Including Hessians” on page 2-28.

* HessianMultiplyFcn — Give a separate function for Hessian-times-vector
evaluation. For details, see “Including Hessians” on page 2-28 and “Hessian Multiply
Function” on page 2-31.

* SubproblemAlgorithm — Determines whether or not to attempt the direct Newton
step. The default setting ' factorization' allows this type of step to be attempted.
The setting 'cg' allows only conjugate gradient steps.

For a complete list of options see Interior-Point Algorithm in fmincon options.
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fminbnd Algorithm

fminbnd is a solver available in any MATLAB installation. It solves for a local minimum in
one dimension within a bounded interval. It is not based on derivatives. Instead, it uses
golden-section search and parabolic interpolation.

fseminf Problem Formulation and Algorithm
fseminf Problem Formulation

fseminf addresses optimization problems with additional types of constraints compared
to those addressed by fmincon. The formulation of fmincon is

min f(x)

such that c(x) = 0, ceq(x) = 0,Ax < b, Aeq'x =beq,and | = x < u.

fseminf adds the following set of semi-infinite constraints to those already given. For w;
in a one- or two-dimensional bounded interval or rectangle I;, for a vector of continuous
functions K(x, w), the constraints are

Kj(x, w

) < 0 for all WiEl

iS4
The term “dimension” of an fseminf problem means the maximal dimension of the
constraint set I: 1 if all [; are intervals, and 2 if at least one I; is a rectangle. The size of
the vector of K does not enter into this concept of dimension.

The reason this is called semi-infinite programming is that there are a finite number of
variables (x and w;), but an infinite number of constraints. This is because the constraints
on x are over a set of continuous intervals or rectangles I;, which contains an infinite
number of points, so there are an infinite number of constraints: Kj(x, w;) < 0 for an
infinite number of points w;.

You might think a problem with an infinite number of constraints is impossible to solve.
fseminf addresses this by reformulating the problem to an equivalent one that has two
stages: a maximization and a minimization. The semi-infinite constraints are reformulated
as

max Kj(x,wj) <0 forallj=1,..,

wjte

K|,
(6-55)
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where |K]| is the number of components of the vector K; i.e., the number of semi-infinite
constraint functions. For fixed x, this is an ordinary maximization over bounded intervals
or rectangles.

fseminf further simplifies the problem by making piecewise quadratic or cubic
approximations k;(x, w)) to the functions Kj(x, w)), for each x that the solver visits.
fseminf considers only the maxima of the interpolation function k;(x, w)), instead of
Kj(x, w)), in “Equation 6-55”. This reduces the original problem, minimizing a semi-
infinitely constrained function, to a problem with a finite number of constraints.

Sampling Points

Your semi-infinite constraint function must provide a set of sampling points, points used in
making the quadratic or cubic approximations. To accomplish this, it should contain:

* The initial spacing s between sampling points w
* A way of generating the set of sampling points w from s

The initial spacing s is a |K|-by-2 matrix. The jth row of s represents the spacing for
neighboring sampling points for the constraint function K;. If K; depends on a one-
dimensional w;, set s(j,2) = 0. fseminf updates the matrix s in subsequent iterations.

fseminf uses the matrix s to generate the sampling points w, which it then uses to
create the approximation x;(x, w;). Your procedure for generating w from s should keep
the same intervals or rectangles I; during the optimization.

Example of Creating Sampling Points

Consider a problem with two semi-infinite constraints, K; and K,. K; has one-dimensional
wy, and K, has two-dimensional w,. The following code generates a sampling set from
w, = 2 to 12:

% Initial sampling interval
if isnan(s(1,1))

s(1,1) .2;

s(1,2) 0;

end

% Sampling set
wl = 2:s(1,1):12;

fseminf specifies s as NaN when it first calls your constraint function. Checking for this
allows you to set the initial sampling interval.
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The following code generates a sampling set from w, in a square, with each component
going from 1 to 100, initially sampled more often in the first component than the second:

% Initial sampling interval
if isnan(s(1,1))

s(2,1) 0.2;

s(2,2) 0.5;
end

% Sampling set

w2x = 1:s5(2,1):100;

w2y = 1:s5(2,2):100;

[wx,wy] = meshgrid(w2x,w2y);

The preceding code snippets can be simplified as follows:

% Initial sampling interval
if isnan(s(1,1))

s = [0.2 0;0.2 0.5];
end

% Sampling set

wl = 2:s5(1,1):12;

w2X s(2,1):100;

w2y s(2,2):100;

[wx,wy] = meshgrid(w2x,w2y);

fseminf Algorithm

fseminf essentially reduces the problem of semi-infinite programming to a problem
addressed by fmincon. fseminf takes the following steps to solve semi-infinite
programming problems:

1  Atthe current value of x, fseminf identifies all the w;; such that the interpolation
Kj(x, w;;) is a local maximum. (The maximum refers to varying w for fixed x.)
2 fseminf takes one iteration step in the solution of the fmincon problem:

min f(x)

such that c(x) = 0, ceq(x) = 0, A-x = b, Aeq'x = beq, and | < x < u, where c(x) is

augmented with all the maxima of k;(x, w;) taken over all w;EL;, which is equal to the
maxima over j and i of x;(x, wj;).
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3 fseminf checks if any stopping criterion is met at the new point x (to halt the
iterations); if not, it continues to step 4.

4 fseminf checks if the discretization of the semi-infinite constraints needs updating,
and updates the sampling points appropriately. This provides an updated
approximation x;(x, w;). Then it continues at step 1.
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Tutorial for the Optimization Toolbox™

This example shows how to use two nonlinear optimization solvers and how to set options.
The nonlinear solvers that we use in this example are fminunc and fmincon.

All the principles outlined in this example apply to the other nonlinear solvers, such as
fgoalattain, fminimax, lsqnonlin, lsqcurvefit, and fsolve.

The example starts with minimizing an objective function, then proceeds to minimize the
same function with additional parameters. After that, the example shows how to minimize
the objective function when there is a constraint, and finally shows how to get a more
efficient and/or accurate solution by providing gradients or Hessian, or by changing some
options.

Unconstrained Optimization Example
Consider the problem of finding a minimum of the function:
xexp(—(x® + y')) + (2% + %) /20

Plot the function to get an idea of where it is minimized

f = @(x,y) X.*exp(-X."2-y."2)+(X."2+y."2)/20;
fsurf(f,[-2,2], 'ShowContours', 'on")
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The plot shows that the minimum is near the point (-1/2,0).

Usually you define the objective function as a MATLAB file. For now, this function is
simple enough to define as an anonymous function:

fun = @(x) f(x(1),x(2));
Take a guess at the solution:
x0 = [-.5; 0];

Set optimization options to not use fminunc's default large-scale algorithm, since that
algorithm requires the objective function gradient to be provided:

options = optimoptions('fminunc', 'Algorithm', 'quasi-newton');
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View the iterations as the solver calculates:

options.Display = 'iter';

Call fminunc, an unconstrained nonlinear minimizer:

[x, fval, exitflag, output] = fminunc(fun,x0,options);

First-order

Iteration Func-count f(x) Step-size optimality
0 3 -0.3769 0.339
1 6 -0.379694 1 0.286
2 9 -0.405023 1 0.0284
3 12 -0.405233 1 0.00386
4 15 -0.405237 1 3.17e-05
5 18 -0.405237 1 3.35e-08

Local minimum found.

Optimization completed because the size of the gradient is less than
the default value of the optimality tolerance.

The solver found a solution at:

uncx X

uncx = 2x1

-0.6691
0.0000

The function value at the solution is:

uncf fval

uncf -0.4052

We will use the number of function evaluations as a measure of efficiency in this example.
The total number of function evaluations is:

output.funcCount

ans = 18
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Unconstrained Optimization with Additional Parameters

We will now pass extra parameters as additional arguments to the objective function. We
show two different ways of doing this - using a MATLAB file, or using a nested function.

Consider the objective function from the previous section:
flx, vl = xexp(—(x® + 7)) 4+ (27 4 %)/ 20.
We parametrize the function with (a,b,c) in the following way:
fle.vabe)=(x—a)exp(—({x—a)’+{(y=b))) +{(x—a)’+({y—b)")/c.
This function is a shifted and scaled version of the original objective function.

Method 1: MATLAB file Function

Suppose we have a MATLAB file objective function called bowlpeakfun defined as:
type bowlpeakfun

function y = bowlpeakfun(x, a, b, c)
%BOWLPEAKFUN Objective function for parameter passing in TUTDEMO.

% Copyright 2008 The MathWorks, Inc.

y = (x(1)-a).*exp(-((x(1l)-a).72+(x(2)-b)."2))+((x(1)-a)."2+(x(2)-b)."2)/c;
Define the parameters:

2;
3;
10;

a
b
c

Create an anonymous function handle to the MATLAB file:
f = @(x)bowlpeakfun(x,a,b,c)
f = function handle with value:

@(x)bowlpeakfun(x,a,b,c)

Call fminunc to find the minimum:
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x0 = [-.5; 0];

options = optimoptions('fminunc', 'Algorithm', 'quasi-newton');
[x, fval] = fminunc(f,x0,options)

Local minimum found.

Optimization completed because the size of the gradient is less than
the default value of the optimality tolerance.

X = 2x1
1.3639
3.0000

fval = -0.3840
Method 2: Nested Function

Consider the following function that implements the objective as a nested function
type nestedbowlpeak

function [x,fval] = nestedbowlpeak(a,b,c,x0,options)
%SNESTEDBOWLPEAK Nested function for parameter passing in TUTDEMO.

% Copyright 2008 The MathWorks, Inc.

[x,fval] = fminunc(@nestedfun,x0,options);
function y = nestedfun(x)
y = (x(1)-a).*exp(-((x(1l)-a).72+(x(2)-b)."2))+((x(1)-a).”2+(x(2)-b)."2)/c;
end
end

In this method, the parameters (a,b,c) are visible to the nested objective function called
nestedfun. The outer function, nestedbowlpeak, calls fminunc and passes the
objective function, nestedfun.

Define the parameters, initial guess, and options:

a=2;
b = 3;
c = 10;
x0 = [-.5; 0];

options = optimoptions('fminunc', 'Algorithm', 'quasi-newton');
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Run the optimization:
[x,fval] = nestedbowlpeak(a,b,c,x0,options)
Local minimum found.

Optimization completed because the size of the gradient is less than
the default value of the optimality tolerance.

X = 2x1

1.3639
3.0000

fval = -0.3840

You can see both methods produced identical answers, so use whichever one you find
most convenient.

Constrained Optimization Example: Inequalities

Consider the above problem with a constraint:
minimize xexp(—(x°+ 1) 4+ (27 4+ /20,
subject to xy/2 + (x +2)*+ (y—2)3/2 £ 2.

The constraint set is the interior of a tilted ellipse. Look at the contours of the objective
function plotted together with the tilted ellipse

f = @(x,y) x.*exp(-x."2-y."2)+(x."2+y."2)/20;
g = @Q(X,y) X.*y/2+(x+2).72+(y-2).72/2-2;
fimplicit(g)

axis([-6 0 -1 7])

hold on

fcontour(f)

plot(-.9727,.4685,'ro");
legend('constraint','f contours', 'minimum');
hold off
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The plot shows that the lowest value of the objective function within the ellipse occurs
near the lower right part of the ellipse. We are about to calculate the minimum that was
just plotted. Take a guess at the solution:

x0 = [-2 11;

Set optimization options: use the interior-point algorithm, and turn on the display of
results at each iteration:

options = optimoptions('fmincon', 'Algorithm', 'interior-point', 'Display’', 'iter');

Solvers require that nonlinear constraint functions give two outputs: one for nonlinear
inequalities, the second for nonlinear equalities. So we write the constraint using the
deal function to give both outputs:
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gfun = @(x) deal(g(x(1),x(2)),[1);

Call the nonlinear constrained solver. There are no linear equalities or inequalities or
bounds, so pass [ ] for those arguments:

[x,fval,exitflag,output] = fmincon(fun,x0,[1,[1,[1,[1,[1,[1,g9fun,options);

First-order Norm of
Iter F-count f(x) Feasibility optimality step
0 3 2.365241e-01 0.000e+00 1.972e-01
1 6 1.748504e-01 0.000e+00 1.734e-01 2.260e-01
2 10 -1.570560e-01 0.000e+00 2.608e-01 9.347e-01
3 14  -6.629160e-02 0.000e+00 1.241e-01 3.103e-01
4 17 -1.584082e-01 0.000e+00 7.934e-02 1.826e-01
5 20 -2.349124e-01 0.000e+00 1.912e-02 1.571e-01
6 23 -2.255299¢e-01 0.000e+00 1.955e-02 1.993e-02
7 26 -2.444225e-01 0.000e+00 4.293e-03 3.821e-02
8 29 -2.446931e-01 0.000e+00 8.100e-04 4.035e-03
9 32 -2.446933e-01 0.000e+00 1.999¢-04 8.126e-04
10 35 -2.448531e-01 0.000e+00 4.004e-05 3.289%¢e-04
11 38 -2.448927e-01 0.000e+00 4.036e-07 8.156e-05

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the optimality tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

A solution to this problem has been found at:
X
X = 1Ix2

-0.9727 0.4686

The function value at the solution is:

fval

fval = -0.2449

The total number of function evaluations was:

Fevals = output.funcCount
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Fevals = 38
The inequality constraint is satisfied at the solution.
[c, ceq] = gfun(x)
C = -2.4608e-06
ceq =
[

Since c(x) is close to 0, the constraint is "active," meaning the constraint affects the
solution. Recall the unconstrained solution was found at

uncx
uncx = 2x1
-0.6691
0.0000
and the unconstrained objective function was found to be
uncf

uncf = -0.4052

The constraint moved the solution, and increased the objective by
fval-uncf
ans = 0.1603

Constrained Optimization Example: User-Supplied Gradients

Optimization problems can be solved more efficiently and accurately if gradients are
supplied by the user. This example shows how this may be performed. We again solve the
inequality-constrained problem

minimize xexp(—(x*+ v')) + (x* + ) /20,

subject to xy/2 + (x+2)* + (y—2)3/2 < 2.
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To provide the gradient of f(x) to fmincon, we write the objective function in the form of
a MATLAB file:

type onehump

function [f,gf] = onehump(x)
% ONEHUMP Helper function for Tutorial for the Optimization Toolbox demo

o°

Copyright 2008-2009 The MathWorks, Inc.

X(1)"2 + x(2)"2;
exp(-r);
X(1)*s+r/20;

(2]
I n

if nargout > 1
gf = [(1-2*x(1)"2)*s+x(1)/10;
-2%x (1) *x(2)*s+x(2)/10];
end

The constraint and its gradient are contained in the MATLAB file tiltellipse:
type tiltellipse

function [c,ceq,gc,gceq] = tiltellipse(x)
% TILTELLIPSE Helper function for Tutorial for the Optimization Toolbox demo

% Copyright 2008-2009 The MathWorks, Inc.
x(1)*x(2)/2 + (x(1)+2)72 + (x(2)-2)"2/2 - 2;
=[]
if nargout > 2
gc = [x(2)/2+2*%(x(1)+2);
X(1)/2+x(2)-21;

gceq = [1;
end

Make a guess at the solution:
x0 = [-2; 11;
Set optimization options: we continue to use the same algorithm for comparison purposes.

options = optimoptions('fmincon', 'Algorithm', 'interior-point');
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We also set options to use the gradient information in the objective and constraint
functions. Note: these options MUST be turned on or the gradient information will be
ignored.
options = optimoptions(options,...
'SpecifyObjectiveGradient',true,...
'SpecifyConstraintGradient',true);

There should be fewer function counts this time, since fmincon does not need to
estimate gradients using finite differences.

options.Display = 'iter';
Call the solver:

[x,fval,exitflag,output] = fmincon(@onehump,x0,[1,[]1,[1,[1,[]1,[1,
@tiltellipse,options);

First-order Norm of
Iter F-count f(x) Feasibility optimality step
0 1 2.365241e-01 0.000e+00 1.972e-01
1 2 1.748504e-01 0.000e+00 1.734e-01 2.260e-01
2 4 -1.570560e-01 0.000e+00 2.608e-01 9.347e-01
3 6 -6.629161e-02 0.000e+00 1.241e-01 3.103e-01
4 7 -1.584082e-01 0.000e+00 7.934e-02 1.826e-01
5 8 -2.349124e-01 0.000e+00 1.912e-02 1.571e-01
6 9 -2.255299%e-01 0.000e+00 1.955e-02 1.993e-02
7 10 -2.444225e-01 0.000e+00 4.293e-03 3.821e-02
8 11 -2.446931e-01 0.000e+00 8.100e-04 4.035e-03
9 12 -2.446933e-01 0.000e+00 1.999¢e-04 8.126e-04
10 13 -2.448531e-01 0.000e+00 4.004e-05 3.289%e-04
11 14 -2.448927e-01 0.000e+00 4.036e-07 8.156e-05

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the optimality tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

fmincon estimated gradients well in the previous example, so the iterations in the
current example are similar.

The solution to this problem has been found at:

xold = x
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xold = 2x1
-0.9727
0.4686
The function value at the solution is:
minfval = fval
minfval = -0.2449
The total number of function evaluations was:

Fgradevals

output. funcCount

Fgradevals = 14

Compare this to the number of function evaluations without gradients:
Fevals

Fevals = 38

Changing the Default Termination Tolerances

This time we solve the same constrained problem
minimize xexp(—(x*+ ¥')) + (x* + ") /20,
subject to xy/2 + (x+2)7 + (y—2)3/2 < 2,

more accurately by overriding the default termination criteria (options.StepTolerance and
options.OptimalityTolerance). We continue to use gradients. The default values for
fmincon's interior-point algorithm are options.StepTolerance = le-10,
options.OptimalityTolerance = le-6.

Override two default termination criteria: termination tolerances on X and fval.
options = optimoptions(options,...

'StepTolerance',le-15, ...

'OptimalityTolerance',le-8);

Call the solver:
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[x,fval,exitflag,output] = fmincon(@onehump,x®,[1,[1,[1,[1,[1,I1,
@tiltellipse,options);

First-order Norm of
Iter F-count f(x) Feasibility optimality step
0 1 2.365241e-01 0.000e+00 1.972e-01
1 2 1.748504e-01 0.000e+00 1.734e-01 2.260e-01
2 4 -1.570560e-01 0.000e+00 2.608e-01 9.347e-01
3 6 -6.629161e-02 0.000e+00 1.241e-01 3.103e-01
4 7 -1.584082e-01 0.000e+00 7.934e-02 1.826e-01
5 8 -2.349124e-01 0.000e+00 1.912e-02 1.571e-01
6 9 -2.255299%e-01 0.000e+00 1.955e-02 1.993e-02
7 10 -2.444225e-01 0.000e+00 4.293e-03 3.821e-02
8 11 -2.446931e-01 0.000e+00 8.100e-04 4.035e-03
9 12 -2.446933e-01 0.000e+00 1.999e-04 8.126e-04
10 13 -2.448531e-01 0.000e+00 4.004e-05 3.289%¢e-04
11 14 -2.448927e-01 0.000e+00 4.036e-07 8.156e-05
12 15 -2.448931e-01 0.000e+00 4.000e-09 8.230e-07

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the selected value of the optimality tolerance,
and constraints are satisfied to within the default value of the constraint tolerance.

We now choose to see more decimals in the solution, in order to see more accurately the
difference that the new tolerances make.

format long

The optimizer found a solution at:
X

X = 2x1

-0.972742227363546
0.468569289098342

Compare this to the previous value:
xold
xold = 2x1
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-0.972742694488360
0.468569966693330

The change is
x - xold

ans = 2x1
106 x

0.467124813385844
-0.677594988729435

The function value at the solution is:
fval

fval =
-0.244893137879894

The solution improved by
fval - minfval

ans =
-3.996450220755676e-07

(this is negative since the new solution is smaller)
The total number of function evaluations was:

output.funcCount

ans =
15

Compare this to the number of function evaluations when the problem is solved with user-

provided gradients but with the default tolerances:

Fgradevals
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Fgradevals =
14

Constrained Optimization Example with User-Supplied Hessian

If you give not only a gradient, but also a Hessian, solvers are even more accurate and
efficient.

fmincon's interior-point solver takes a Hessian matrix as a separate function (not part of
the objective function). The Hessian function H(x,lambda) should evaluate the Hessian of
the Lagrangian; see the User's Guide for the definition of this term.

Solvers calculate the values lambda.inegnonlin and lambda.eqlin; your Hessian function
tells solvers how to use these values.

In this problem we have but one inequality constraint, so the Hessian is:
type hessfordemo

function H = hessfordemo(x, lambda)
% HESSFORDEMO Helper function for Tutorial for the Optimization Toolbox demo

[)

% Copyright 2008-2009 The MathWorks, Inc.

S
H

exp(-(x(1)"2+x(2)"2));

[2%x(1)*(2*x(1)"2-3)*s+1/10, 2*x(2)*(2*x(1)"2-1)*s;
2¥X(2)*(2*x(1)"2-1)*s, 2*x(1)*(2*x(2)"2-1)*s+1/10];

hessc = [2,1/2;1/2,1];

H = H + lambda.inegnonlin(1)*hessc;

In order to use the Hessian, you need to set options appropriately:
options = optimoptions('fmincon', ...
'Algorithm', 'interior-point', ...
'SpecifyConstraintGradient', true,...

'SpecifyObjectiveGradient', true,...
'HessianFcn',@hessfordemo);

The tolerances have been set back to the defaults. There should be fewer function counts
this time.

options.Display = 'iter';

Call the solver:
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[x,fval,exitflag,output] = fmincon(@onehump,x®,[1,[1,[1,[1,[1,I1,
@tiltellipse,options);

First-order Norm of
Iter F-count f(x) Feasibility optimality step
0 1 2.365241e-01 0.000e+00 1.972e-01
1 3 5.821325e-02 0.000e+00 1.443e-01 8.728e-01
2 5 -1.218829%e-01 0.000e+00 1.007e-01 4.927e-01
3 6 -1.421167e-01 0.000e+00 8.486e-02 5.165e-02
4 7 -2.261916e-01 0.000e+00 1.989e-02 1.667e-01
5 8 -2.433609e-01 0.000e+00 1.537e-03 3.486e-02
6 9 -2.446875e-01 0.000e+00 2.057e-04 2.727e-03
7 10 -2.448911e-01 0.000e+00 2.068e-06 4.191e-04
8 11 -2.448931e-01 0.000e+00 2.001e-08 4.218e-06

Local minimum found that satisfies the constraints.
Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the optimality tolerance,
and constraints are satisfied to within the default value of the constraint tolerance.

There were fewer, and different iterations this time.
The solution to this problem has been found at:
X
X = 2x1

-0.972742246093537

0.468569316215571

The function value at the solution is:
fval
fval =

-0.244893121872758
The total number of function evaluations was:

output.funcCount
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Compare this to the number using only gradient evaluations, with the same default
tolerances:

Fgradevals

Fgradevals =
14

See Also

More About

. “Passing Extra Parameters” on page 2-64
. “Solver-Based Optimization Problem Setup”
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Banana Function Minimization

6-62

This example shows how to minimize Rosenbrock's "banana function":

Flx) =100{x(2) —x( 1)+ (1 —x(1))%

F1x) s called the banana function because of its curvature around the origin. It is
notorious in optimization examples because of the slow convergence most methods
exhibit when trying to solve this problem.

1]

/1X} has a unique minimum at the point * = LI+ 1| where /X) =0 This example shows

a number of ways to minimize /X! starting at the point *0 = [—1.9.2]

Optimization Without Derivatives

The fminsearch function finds a minimum for a problem without constraints. It uses an
algorithm that does not estimate any derivatives of the objective function. Rather, it uses
a geometric search method described in “fminsearch Algorithm” on page 6-11.

Minimize the banana function using fminsearch. Include an output function to report
the sequence of iterations.

fun = @(x) (100*(x(2) - x(1)"2)"2 + (1 - x(1))"2);

options = optimset('OutputFcn',@bananaout, 'Display’', 'off');
x0 = [-1.9,2];

[x,fval,eflag,output] = fminsearch(fun,x0,options);

title 'Rosenbrock solution via fminsearch'



Banana Function Minimization

Rosenbrock solution via fminsearch

2000
1000 ~
0
-2
05 0 o5 1 s -1
x(1) ' 2

Fcount = output.funcCount;
disp(['Number of function evaluations for fminsearch was ',num2str(Fcount)])

Number of function evaluations for fminsearch was 210

disp(['Number of solver iterations for fminsearch was ',num2str(output.iterations)])
Number of solver iterations for fminsearch was 114

Optimization with Estimated Derivatives

The fminunc function finds a minimum for a problem without constraints. It uses a
derivative-based algorithm. The algorithm attempts to estimate not only the first
derivative of the objective function, but also the matrix of second derivatives. fminunc is
usually more efficient than fminsearch.
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2000 —

1000 —

6-64

Minimize the banana function using fminunc.

options = optimoptions('fminunc', 'Display', 'off',...
'"OutputFcn',@bananaout, 'Algorithm', 'quasi-newton');

[x,fval,eflag,output] = fminunc(fun,x0,options);

title 'Rosenbrock solution via fminunc'

Rosenbrock solution via fminunc

0.5 1 -1
x(1)

Fcount = output.funcCount;
disp(['Number of function evaluations for fminunc was ',num2str(Fcount)])

Number of function evaluations for fminunc was 150
disp(['Number of solver iterations for fminunc was ',num2str(output.iterations)])

Number of solver iterations for fminunc was 34



Banana Function Minimization

Optimization with Steepest Descent

If you attempt to minimize the banana function using a steepest descent algorithm, the
high curvature of the problem makes the solution process very slow.

You can run fminunc with the steepest descent algorithm by setting the hidden
HessUpdate option to the value 'steepdesc' for the 'quasi-newton' algorithm. Set
a larger-than-default maximum number of function evaluations, because the solver does
not find the solution quickly. In this case, the solver does not find the solution even after
600 function evaluations.

options = optimoptions(options, 'HessUpdate', 'steepdesc’,...
'MaxFunctionEvaluations',600);

[x,fval,eflag,output] = fminunc(fun,x0,options);

title 'Rosenbrock solution via steepest descent'
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Rosenbrock solution via steepest descent

2000
1000 —
0
2
Bt 0 o5 ’ -1
; 15
x(1) 2

Fcount = output.funcCount;
disp(['Number of function evaluations for steepest descent was ',...
num2str(Fcount)])

Number of function evaluations for steepest descent was 600

disp(['Number of solver iterations for steepest descent was ',...
num2str(output.iterations)])

Number of solver iterations for steepest descent was 45
Optimization with Analytic Gradient

If you provide a gradient, fminunc solves the optimization using fewer function
evaluations. When you provide a gradient, you can use the 'trust-region' algorithm,
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which is often faster and uses less memory than the 'quasi-newton' algorithm. Reset
the HessUpdate and MaxFunctionEvaluations options to their default values.

grad = @(x)[-400*(x(2) - x(1)72)*x(1) - 2*(1 - x(1));
200*(x(2) - x(1)"2)1;

fungrad = @(x)deal(fun(x),grad(x));
options = resetoptions(options, {'HessUpdate', 'MaxFunctionEvaluations'});
options = optimoptions(options, 'SpecifyObjectiveGradient',true,...

"Algorithm', 'trust-region');
[x,fval,eflag,output] = fminunc(fungrad,x0,options);
title 'Rosenbrock solution via fminunc with gradient'

Rosenbrock solution via fminunc with gradient

) L]
'55.'-'55'1-?;.*
-Egaga ® lterative steps
-.‘- 3
2000 —
2
1000 —
0
2 ®#(2)
0 B
x?15] 1 1o 2 1
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Fcount = output.funcCount;
disp(['Number of function evaluations for fminunc with gradient was ', ...
num2str(Fcount)])

Number of function evaluations for fminunc with gradient was 32

disp(['Number of solver iterations for fminunc with gradient was ', ...
num2str(output.iterations)])

Number of solver iterations for fminunc with gradient was 31
Optimization with Analytic Hessian

If you provide a Hessian (matrix of second derivatives), fminunc can solve the
optimization using even fewer function evaluations. For this problem the results are the
same with or without the Hessian.

hess = @(x)[1200*x(1)"2 - 400*x(2) + 2, -400*x(1);
-400*x(1), 200];

fungradhess = @(x)deal(fun(x),grad(x),hess(x));

options.HessianFcn = 'objective';

[x,fval,eflag,output] = fminunc(fungradhess,x0,options);

title 'Rosenbrock solution via fminunc with Hessian'
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Rosenbrock solution via fminunc with Hessian

2000
1000 ~
0
-2
05 0 o5 1 s -1
x(1) ' 2

Fcount = output.funcCount;

disp(['Number of function evaluations for fminunc with gradient and Hessian was ',...
num2str(Fcount)])

Number of function evaluations for fminunc with gradient and Hessian was 32

disp(['Number of solver iterations for fminunc with gradient and Hessian was ',num2str

Number of solver iterations for fminunc with gradient and Hessian was 31

Optimization with a Least Squares Solver

The recommended solver for a nonlinear sum of squares is Lsqnonlin. This solver is
even more efficient than fminunc without a gradient for this special class of problems. To
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use Lsqnonlin, do not write your objective as a sum of squares. Instead, write the
underlying vector that Lsqnonlin internally squares and sums.

options = optimoptions('lsqgnonlin', 'Display','off"', 'OutputFcn',@bananaout);
vfun = @(x)[10*(x(2) - x(1)"2),1 - x(1)1;

[x,resnorm, residual,eflag,output] = lsgnonlin(vfun,x0,[],[],options);

title 'Rosenbrock solution via lsgnonlin'

Rosenbrock solution via Isgnonlin

2000 —

1000 -

Fcount = output.funcCount;
disp(['Number of function evaluations for lsgnonlin was ',...
num2str(Fcount)])

Number of function evaluations for lsqnonlin was 87

disp(['Number of solver iterations for lsgnonlin was ',num2str(output.iterations)])
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Number of solver iterations for lsgnonlin was 28

Optimization with a Least Squares Solver and Jacobian

As in the minimization using a gradient for fminunc, Lsgnonlin can use derivative
information to lower the number of function evaluations. Provide the Jacobian of the
nonlinear objective function vector and run the optimization again.

jac = @(x)[-20*x(1),10;
'1l0];
vfunjac = @(x)deal(vfun(x),jac(x));
options.SpecifyObjectiveGradient = true;
[x,resnorm, residual,eflag,output] = lsgnonlin(vfunjac,x0,[],[],options);
title 'Rosenbrock solution via lsgnonlin with Jacobian'

Rosenbrock solution via Isgnonlin with Jacobian

2000 — i~
Solution ﬁ

P 7
i

1000 —

x(1)
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Fcount = output.funcCount;
disp(['Number of function evaluations for lsgnonlin with Jacobian was '
num2str(Fcount)])

Number of function evaluations for lsgnonlin with Jacobian was 29

disp(['Number of solver iterations for lsgnonlin with Jacobian was '
num2str(output.iterations)])

yoronn

Number of solver iterations for lsgnonlin with Jacobian was 28

See Also

More About

. “Solve a Constrained Nonlinear Problem” on page 1-5
. “Symbolic Math Toolbox Calculates Gradients and Hessians” on page 6-116
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Minimizing an Expensive Optimization Problem Using
Parallel Computing Toolbox™

This example shows how to how to speed up the minimization of an expensive
optimization problem using functions in Optimization Toolbox™ and Global Optimization
Toolbox. In the first part of the example we solve the optimization problem by evaluating
functions in a serial fashion and in the second part of the example we solve the same
problem using the parallel for loop (parfor) feature by evaluating functions in parallel.
We compare the time taken by the optimization function in both cases.

Expensive Optimization Problem

For the purpose of this example, we solve a problem in four variables, where the objective
and constraint functions are made artificially expensive by pausing.

function f = expensive objfun(x)
%SEXPENSIVE OBJFUN An expensive objective function used in optimparfor example.

[)

% Copyright 2007-2013 The MathWorks, Inc.

% Simulate an expensive function by pausing

pause(0.1)

% Evaluate objective function

f = exp(x(1)) * (4*x(3)"2 + 2*x(4)"2 + 4*x(1)*x(2) + 2*x(2) + 1);

function [c,ceq] = expensive confun(x)
SEXPENSIVE CONFUN An expensive constraint function used in optimparfor example.

% Copyright 2007-2013 The MathWorks, Inc.

% Simulate an expensive function by pausing

pause(0.1);

% Evaluate constraints

= [1.5 + x(1)*x(2)*x(3) - x(1) - x(2) - x(4);
-x(1)*x(2) + x(4) - 10];

% No nonlinear equality constraints:

ceq = [1;

0O
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Minimizing Using fmincon

We are interested in measuring the time taken by fmincon in serial so that we can
compare it to the parallel time.

startPoint = [-1 1 1 -1];

options = optimoptions('fmincon', 'Display', 'iter','Algorithm', 'interior-point');
startTime = tic;

xsol = fmincon(@expensive objfun,startPoint,[],[]1,[1,[],[],[],@expensive confun,option
time fmincon sequential = toc(startTime);

fprintf('Serial FMINCON optimization takes %g seconds.\n',time fmincon sequential);

First-order Norm of
Iter F-count f(x) Feasibility optimality step
0 5 1.839397e+00 1.500e+00 3.211e+00
1 11 -9.760099e-01 3.708e+00 7.902e-01 2.362e+00
2 16 -1.480976e+00 0.000e+00 8.344e-01 1.069e+00
3 21 -2.601599e+00 0.000e+00 8.390e-01 1.218e+00
4 29 -2.823630e+00 0.000e+00 2.598e+00 1.118e+00
5 34 -3.905338e+00 0.000e+00 1.210e+00 7.302e-01
6 39 -6.212992e+00 3.934e-01 7.372e-01 2.405e+00
7 44 -5.948762e+00 0.000e+00 1.784e+00 1.905e+00
8 49 -6.940062e+00 1.233e-02 7.668e-01 7.553e-01
9 54 -6.973887e+00 0.000e+00 2.549e-01 3.920e-01
10 59 -7.142993e+00 0.000e+00 1.903e-01 4.735e-01
11 64 -7.155325e+00 0.000e+00 1.365e-01 2.626e-01
12 69 -7.179122e+00 0.000e+00 6.336e-02 9.115e-02
13 74 -7.180116e+00 0.000e+00 1.069e-03 4.670e-02
14 79 -7.180409e+00 0.000e+00 7.799%¢e-04 2.815e-03
15 84 -7.180410e+00 0.000e+00 6.070e-06 3.122e-04

Local minimum found that satisfies the constraints.
Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the optimality tolerance,
and constraints are satisfied to within the default value of the constraint tolerance.

Serial FMINCON optimization takes 16.94 seconds.
Minimizing Using Genetic Algorithm

Since ga usually takes many more function evaluations than fmincon, we remove the
expensive constraint from this problem and perform unconstrained optimization instead.
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Pass empty matrices [ ] for constraints. In addition, we limit the maximum number of
generations to 15 for ga so that ga can terminate in a reasonable amount of time. We are
interested in measuring the time taken by ga so that we can compare it to the parallel ga
evaluation. Note that running ga requires Global Optimization Toolbox.

rng default % for reproducibility

try
gaAvailable = false;
nvar = 4;
gaoptions = optimoptions('ga', 'MaxGenerations',15, 'Display’', 'iter');
startTime = tic;

gasol = ga(@expensive objfun,nvar,[1,[]1,[1,[1,[1,[]1,[]1,g9aoptions);
time ga sequential = toc(startTime);
fprintf('Serial GA optimization takes %g seconds.\n',6time ga sequential);
gaAvailable = true;
catch ME
warning(message('optimdemos:optimparfor:gaNotFound'));

end
Best Mean Stall
Generation f-count f(x) f(x) Generations
1 100 -5.546e+05 1.483e+15 0
2 150 -5.581e+17 -1.116e+16 0
3 200 -7.556e+17 6.679e+22 0
4 250 -7.556e+17 -7.195e+16 1
5 300 -9.381e+27 -1.876e+26 0
6 350 -9.673e+27 -7.497e+26 0
7 400 -4.511e+36 -9.403e+34 0
8 450 -5.111e+36 -3.011e+35 0
9 500 -7.671e+36 9.346e+37 0
10 550 -1.52e+43 -3.113e+41 0
11 600 -2.273e+45 -4.67e+43 0
12 650 -2.589%e+47 -6.281e+45 0
13 700 -2.589e+47 -1.015e+46 1
14 750 -8.149e+47 -5.855e+46 0
15 800 -9.503e+47 -1.29e+47 0

Optimization terminated: maximum number of generations exceeded.
Serial GA optimization takes 80.1669 seconds.

Setting Parallel Computing Toolbox

The finite differencing used by the functions in Optimization Toolbox to approximate
derivatives is done in parallel using the parfor feature if Parallel Computing Toolbox is
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available and there is a parallel pool of workers. Similarly, ga, gamultiobj, and
patternsearch solvers in Global Optimization Toolbox evaluate functions in parallel. To
use the parfor feature, we use the parpool function to set up the parallel environment.
The computer on which this example is published has four cores, so parpool starts four
MATLAB® workers. If there is already a parallel pool when you run this example, we use
that pool; see the documentation for parpool for more information.

if max(size(gcp)) == % parallel pool needed
parpool % create the parallel pool
end

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.
Minimizing Using Parallel fmincon

To minimize our expensive optimization problem using the parallel fmincon function, we
need to explicitly indicate that our objective and constraint functions can be evaluated in
parallel and that we want fmincon to use its parallel functionality wherever possible.
Currently, finite differencing can be done in parallel. We are interested in measuring the
time taken by fmincon so that we can compare it to the serial fmincon run.

options = optimoptions(options, 'UseParallel’,true);

startTime = tic;

xsol = fmincon(@expensive objfun,startPoint,[]1,[1,[1,[]1,[1,[]1,@expensive confun,option
time fmincon parallel = toc(startTime);

fprintf('Parallel FMINCON optimization takes %g seconds.\n',time_ fmincon parallel);

First-order Norm of
Iter F-count f(x) Feasibility optimality step
0 5 1.839397e+00 1.500e+00 3.211e+00
1 11 -9.760099e-01 3.708e+00 7.902e-01 2.362e+00
2 16 -1.480976e+00 0.000e+00 8.344e-01 1.069e+00
3 21 -2.601599e+00 0.000e+00 8.390e-01 1.218e+00
4 29 -2.823630e+00 0.000e+00 2.598e+00 1.118e+00
5 34 -3.905338e+00 0.000e+00 1.210e+00 7.302e-01
6 39 -6.212992e+00 3.934e-01 7.372e-01 2.405e+00
7 44 -5.948762e+00 0.000e+00 1.784e+00 1.905e+00
8 49 -6.940062e+00 1.233e-02 7.668e-01 7.553e-01
9 54 -6.973887e+00 0.000e+00 2.549e-01 3.920e-01
10 59 -7.142993e+00 0.000e+00 1.903e-01 4.735e-01
11 64 -7.155325e+00 0.000e+00 1.365e-01 2.626e-01
12 69 -7.179122e+00 0.000e+00 6.336e-02 9.115e-02
13 74 -7.180116e+00 0.000e+00 1.069e-03 4.670e-02
14 79 -7.180409e+00 0.000e+00 7.799e-04 2.815e-03
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15 84 -7.180410e+00 0.000e+00 6.070e-06 3.122e-04
Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the default value of the optimality tolerance,
and constraints are satisfied to within the default value of the constraint tolerance.

Parallel FMINCON optimization takes 13.9436 seconds.

Minimizing Using Parallel Genetic Algorithm

To minimize our expensive optimization problem using the ga function, we need to
explicitly indicate that our objective function can be evaluated in parallel and that we
want ga to use its parallel functionality wherever possible. To use the parallel ga we also
require that the 'Vectorized' option be set to the default (i.e., 'off'). We are again
interested in measuring the time taken by ga so that we can compare it to the serial ga
run. Though this run may be different from the serial one because ga uses a random
number generator, the number of expensive function evaluations is the same in both runs.
Note that running ga requires Global Optimization Toolbox.

rng default % to get the same evaluations as the previous run
if gaAvailable
gaoptions = optimoptions(gaoptions, 'UseParallel',true);
startTime = tic;
gasol = ga(@expensive objfun,nvar,[1,[1,[1,[1,[1,[1,[],g9aoptions);
time ga parallel = toc(startTime);
fprintf('Parallel GA optimization takes %g seconds.\n',time ga parallel);

end
Best Mean Stall
Generation f-count f(x) f(x) Generations
1 100 -5.546e+05 1.483e+15 0
2 150 -5.581e+17 -1.116e+16 0
3 200 -7.556e+17 6.679e+22 0
4 250 -7.556e+17 -7.195e+16 1
5 300 -9.381e+27 -1.876e+26 0
6 350 -9.673e+27 -7.497e+26 0
7 400 -4.,511e+36 -9.403e+34 0
8 450 -5.111e+36 -3.011e+35 0
9 500 -7.671e+36 9.346e+37 0

6-77



6 Nonlinear algorithms and examples

6-78

Optimization terminated:
Parallel GA optimization

10
11
12
13
14
15

550
600
650
700
750
800

-1.52e+43 -3.113e+41 0
-2.273e+45 -4.67e+43 0
-2.589e+47 -6.281e+45 0
-2.589e+47 -1.015e+46 1
-8.149e+47 -5.855e+46 0
-9.503e+47 -1.29e+47 0

maximum number of generations exceeded.
takes 25.3579 seconds.

Compare Serial and Parallel Time

X
Y
t

plot(t,X, 'r--",t,Y,'k-")
ylabel('Time in seconds')
legend('fmincon', 'ga"')

= gca;

ax

[time fmincon_sequential time fmincon parallell];
[time ga sequential time ga parallel];

(0 1];

ax.XTick = [0 1];

ax.XTickLabel = {'Serial'’

'Parallel'};

axis([0 1 0 ceil(max([X Y1))1)

title('Serial Vs.

Parallel Times')



See Also

Time in seconds

Serial Vs. Parallel Times
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Serial Farallel

Utilizing parallel function evaluation via parfor improved the efficiency of both fmincon
and ga. The improvement is typically better for expensive objective and constraint
functions.

See Also

More About

. “Parallel Computing”
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Nonlinear Inequality Constraints

6-80

This example shows how to solve a scalar minimization problem with nonlinear inequality
constraints. The problem is to find x that solves

min f(x) = ™ (4x% + 2x§ +4xx9 + 229 + 1).
x (6-56)

subject to the constraints

I\

X1Xo - X1 - Xy —1.5,
X1Xo = -10.

Because neither of the constraints is linear, you cannot pass the constraints to fmincon
at the command line. Instead you can create a second file, confun.m, that returns the
value at both constraints at the current x in a vector c. The constrained optimizer,
fmincon, is then invoked. Because fmincon expects the constraints to be written in the
form c(x) = 0, you must rewrite your constraints in the form

X1Xy - X4 - Xy + 1.5 0,
-X1X; -10 = 0. (6-57)

IA

Step 1: Write a file objfun.m for the objective function.

function f = objfun(x)
f = exp(x(1))*(4*x(1)"2 + 2*¥x(2)72 + 4*x(1)*x(2) + 2*x(2) + 1);

Step 2: Write a file confun.m for the constraints.

function [c, ceq] = confun(x)

% Nonlinear inequality constraints

c =[1.5 + x(1)*x(2) - x(1) - x(2);
-x(1)*x(2) - 101;

% Nonlinear equality constraints

ceq = [1;

Step 3: Invoke constrained optimization routine.

x0 = [-1,1]; % Make a starting guess at the solution
options = optimoptions(@fmincon, 'Algorithm', 'sqp');



See Also

[x,fval] = ...
fmincon(@objfun,x0,[1,[1,[1,[1,[1,[]1,@confun,options);

fmincon produces the solution x with function value fval:
x, fval
X =

-9.5474 1.0474
fval =

0.0236

You can evaluate the constraints at the solution by entering
[c,ceq] = confun(x)
This returns numbers close to zero, such as
C =

1.0e-14 *

0.5107
-0.5329

ceq =
[

Note that both constraint values are, to within a small tolerance, less than or equal to 0;
that is, x satisfies c(x) = 0.

See Also
Related Examples

. “Nonlinear Equality and Inequality Constraints” on page 6-96
. “Nonlinear Constraints with Gradients” on page 6-82
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Nonlinear Constraints with Gradients

6-82

Ordinarily, minimization routines use numerical gradients calculated by finite-difference
approximation. This procedure systematically perturbs each of the variables in order to
calculate function and constraint partial derivatives. Alternatively, you can provide a
function to compute partial derivatives analytically. Typically, the problem is solved more
accurately and efficiently if such a function is provided.

Consider how to solve

min £(x) = €% (427 + 203 + 42,05 + 20 +1).
x

subject to the constraints

I\

X1Xo - X1 - Xy —1.5,
X1Xo = -10.

To solve the problem using analytically determined gradients, do the following.

Step 1: Write a file for the objective function and gradient.

function [f,gradf] = objfungrad(x)
f = exp(x(1))*(4*x(1)"242*x(2)"2+4*x (1) *x(2)+2*x(2)+1);
% Gradient of the objective function:
if nargout >1
gradf = [ f + exp(x(1)) * (8*x(1l) + 4*x(2)),
exp(x(1))*(4*x(1)+4*x(2)+2)1;
end

Step 2: Write a file for the nonlinear constraints and the
gradients of the nonlinear constraints.

function [c,ceq,DC,DCeq] = confungrad(x)
c(l) = 1.5 + x(1) * x(2) - x(1) - x(2); % Inequality constraints
c(2) = -x(1) * x(2)-10;
% No nonlinear equality constraints
ceq=[1];
% Gradient of the constraints:
if nargout > 2
DC= [x(2)-1, -x(2);
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x(1)-1, -x(1)1;
DCeq = [];
end

gradf contains the partial derivatives of the objective function, f, returned by
objfungrad(x), with respect to each of the elements in x:

. et (4x% + Zx% +4x7 %9 + 229 + 1) +e" (8xq +4xy)
Vf = .

e™1 (4x; +4xqy +2) (6-58)

The columns of DC contain the partial derivatives for each respective constraint (i.e., the
ith column of DC is the partial derivative of the ith constraint with respect to x). So in
the above example, DC is

de;  dey

o om | [xp-1 -
de;  dey :Lcl -1 —xl}'
oxy 0y

(6-59)

Since you are providing the gradient of the objective in objfungrad.m and the gradient
of the constraints in confungrad.m, you must tell fmincon that these files contain this
additional information. Use optimoptions to turn the options
SpecifyObjectiveGradient and SpecifyConstraintGradient to true in the
example's existing options:

options = optimoptions(options, 'SpecifyObjectiveGradient', true, 'SpecifyConstraintGradi

If you do not set these options to 'on', fmincon does not use the analytic gradients.

The arguments 1b and ub place lower and upper bounds on the independent variables in
X. In this example, there are no bound constraints, so set both to [].

Step 3: Invoke the constrained optimization routine.

x0 = [-1,1]; % Starting guess
options = optimoptions(@fmincon, 'Algorithm', 'sqp');

options = optimoptions(options, 'SpecifyObjectiveGradient', true, 'SpecifyConstraintGradit

lb=1[1; ub=11; % No upper or lower bounds
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[x,fval] = fmincon(@objfungrad,x0,[]1,[1,[1,[1,lb,ub,...
@confungrad,options);

The results:

x, fval
X =

-9.5474 1.0474
fval =

0.0236

[c,ceq] = confungrad(x) % Check the constraint values at x
C =

1.0e-13 *

-0.1066

0.1066

ceq =

[l

See Also
Related Examples

. “fmincon Interior-Point Algorithm with Analytic Hessian” on page 6-85
. “Symbolic Math Toolbox Calculates Gradients and Hessians” on page 6-116
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fmincon Interior-Point Algorithm with Analytic Hessian

The fmincon interior-point algorithm can accept a Hessian function as an input. When
you supply a Hessian, you may obtain a faster, more accurate solution to a constrained
minimization problem.

The constraint set for this example is the intersection of the interior of two cones—one
pointing up, and one pointing down. The constraint function c is a two-component vector,
one component for each cone. Since this is a three-dimensional example, the gradient of
the constraint c is a 3-by-2 matrix.

function [c ceq gradc gradceq] = twocone(x)
% This constraint is two cones, z > -10 + r
%$and z <3 - r

ceq = [];

r=sqrt(x(1l)”2 + x(2)"2);

c = [-10+r-x(3);
X(3)-3+r];

if nargout > 2

gradceq = [];

gradc = [x(1)/r,x(1)/r;
x(2)/r,x(2)/r;
-1,11;

end

The objective function grows rapidly negative as the x (1) coordinate becomes negative.
Its gradient is a three-element vector.

function [f gradf] = bigtoleft(x)
This is a simple function that grows rapidly negative
as x(1) gets negative

d° o o°

f=10*x(1)"3+x (1) *x(2)"2+x(3)*(x(1)"2+x(2)"2);
if nargout > 1
gradf=[30*x(1)"2+x(2)"2+2*x(3)*x(1);

2*x (1) *x(2)+2*x(3)*x(2) ;
(x(1)"2+x(2)"2) ];
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end

Here is a plot of the problem. The shading represents the value of the objective function.
You can see that the objective function is minimized near x = [-6.5,0,-3.5]:

The Hessian of the Lagrangian is given by the equation:

V2 L, ) = V2F () + 3 2V (x) + Y. 2,V ceq; (x).

The following function computes the Hessian at a point x with Lagrange multiplier
structure lambda:
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function h

= [60*x(1

2*¥x(2),2*%(x(1)+x(3

2*¥x(1),2*x(2),0];%
r = sqrt(x(l)A2+x(2)A2),%
rinv3d = 1/r°3;

hessc = [(x(2))"2*rinv3,

= hessinterior(x, lambda)

)+2*x(3),2*x(2),2*x(1);
)),2*%x(2);

5 Hessian of f
radius

-X(1)*x(2)*rinv3,0;

-x(1)*x ( )*rinv3,x(1)”2*rinv3,0;
0,0,0];% Hessian of both c(1) and c(2)
h =h+ lam bda inegnonlin(1)*hessc + lambda.

inegnonlin(2)*hessc;

Run this problem using the interior-point algorithm in fmincon. To do this using the

Optimization app:

1  Set the problem as in the following figure.

Solver: fmincon - Constrained nonlinear minimization -
Algorithm: | Interior point -
Problem

Objective function: | @bigtoleft -

Derivatives: Gradient supplied -

Start point: [-1,-1,-1]

Constraints:

Linear inequalities: A b

Linear equalities: Aeq: beq:

Bounds: Lowern Upper

Monlinear constraint function: | @twocone

Derivatives: Gradient supplied A

2 For iterative output, scroll to the bottom of the Options pane and select Level of

display, iterative.
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[ =1 Display to command window

Level of display: :iterati?e
3 In the Options pane, give the analytic Hessian function handle.

[ =l Hessian

Hessian: user-supplied
@ Hessian function
(7 Hessian multiply function

Function: | @hessinterior

4 Under Run solver and view results, click Start.

Run sohver and view results

Current iteration: 3 Clear Results

Optimization running.
Objective function value: -2594, 1247991733007
Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the default value of the function tolerance,
and constraints are satisfied to within the default value of the constraint
tolerance.

av

Final point:

1la 2 3
-6.5 -0 -3.5
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To perform the minimization at the command line:
1 Setoptions as follows:
options = optimoptions(@fmincon, 'Algorithm', ‘interior-point’,...

'Display', 'off', 'SpecifyObjectiveGradient', true, 'SpecifyConstraintGradient"
'HessianFcn',@hessinterior);

2  Run fmincon with starting point [-1,-1,-1], using the options structure:

[x,fval,mflag,output] = fmincon(@bigtoleft,[-1,-1,-11,...
[1,01,01,01,[1,[1,@twocone,options);

Examine the solution, objective function value, exit flag, and number of function
evaluations and iterations:

x, fval,mflag,output.funcCount,output.iterations
X =

-6.5000 -0.0000 -3.5000

fval =

-2.8941e+03

mflag =

1

ans =

ans =
6

If you do not use a Hessian function, fmincon takes 9 iterations to converge, instead of 6:

options = optimoptions(@fmincon, 'Algorithm', 'interior-point’', ...
'Display', 'off', 'SpecifyObjectiveGradient', true, 'SpecifyConstraintGradient', tri
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[x fval mflag output]=fmincon(@bigtoleft,[-1,-1,-11,...
[1,01,01,01,[1,[1,@etwocone,options);

x,output.funcCount,output.iterations
X =

-6.5000 -0.0000 -3.5000

ans =

ans =
9

Both runs lead to similar solutions, but the F-count and number of iterations are lower
when using an analytic Hessian.

See Also
Related Examples

. “Linear or Quadratic Objective with Quadratic Constraints” on page 6-91
. “Symbolic Math Toolbox Calculates Gradients and Hessians” on page 6-116
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Linear or Quadratic Objective with Quadratic
Constraints

This example shows how to solve an optimization problem that has a linear or quadratic
objective and quadratic inequality constraints. It shows how to generate and use the
gradient and Hessian of the objective and constraint functions.

Quadratic Constrained Problem

Suppose that you can put your problem in the form

min(%xTQx+ fo +cj

X

subject to
1
ExTHl-x+ lex—i- dl <0,

where 1 < i < m. Assume that at least one H, is nonzero; otherwise, you can use
quadprog or linprog to solve this problem. With nonzero H;, the constraints are
nonlinear, and the “Optimization Decision Table” on page 2-6 states that fmincon is the
appropriate solver.

The example assumes that the quadratic matrices are symmetric. This is without loss of
generality; you can replace a nonsymmetric H (or Q) matrix with an equivalent
symmetrized version (H + HT)/2.

If x has N components, then Q and the H; are N-by-N matrices, f and the k; are N-by-1
vectors, and ¢ and the d, are scalars.

Objective Function

Formulate the problem using fmincon syntax. Assume that x and f are column vectors.
(x is a column vector when the initial vector x0 is.)

function [y,grady] = quadobj(x,Q,f,c)
y = 1/2*x'"*¥Q*x + f'*x + c;
if nargout > 1
grady = Q*x + f;
end
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Constraint Function

For consistency and easy indexing, place every quadratic constraint matrix in one cell
array. Similarly, place the linear and constant terms in cell arrays.

function [y,yeq,grady,gradyeq] = quadconstr(x,H,k,d)
jj = length(H); % jj is the number of inequality constraints
y = zeros(1l,jj);
for i = 1:jj
y(i) = 1/2*x"*H{i}*x + k{i}'*x + d{i};
end
yeq = [];

if nargout > 2
grady = zeros(length(x),jj);
for i = 1:jj
grady(:,i) = H{i}*x + k{i};
end
end
gradyeq = [];

Numeric Example

For example, suppose that you have the following problem.

Q=13,2,1;

2,4,0;

1,0,5];
f =1-24;-48;-130];
cC = -2;

rng default % for reproducibility
% Two sets of random quadratic constraints:

H{1} = gallery('randcorr',3); % random positive definite matrix
H{2} = gallery('randcorr',3);

k{1} = randn(3,1);

k{2} = randn(3,1);

d{1} = randn;

d{2} = randn;

Hessian

Create a Hessian function. The Hessian of the Lagrangian is given by the equation
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V2. L(x, ) = V20 + ¥ 4V2c () + Y, 2;Vceq; (x).

fmincon calculates an approximate set of Lagrange multipliers 4;, and packages them in
a structure. To include the Hessian, use the following function.

function hess = quadhess(x,lambda,Q,H)

hess = Q;
jj = length(H); % jj is the number of inequality constraints
for i = 1:jj
hess = hess + lambda.inegnonlin(i)*H{i};
end
Solution

Use the fmincon interior-point algorithm to solve the problem most efficiently. This
algorithm accepts a Hessian function that you supply. Set these options.

options = optimoptions(@fmincon, 'Algorithm', 'interior-point’', ...

'SpecifyObjectiveGradient', true, 'SpecifyConstraintGradient', true, ...
'HessianFcn',@(x, lambda)quadhess(x,lambda,Q,H));

Call fmincon to solve the problem.

fun = @(x)quadobj(x,Q,f,c);
nonlconstr = @(x)quadconstr(x,H,k,d);
X0 = [0;0;0]; % column vector

[x,fval,eflag,output,lambdal = fmincon(fun,x0, ...
[1,01,01,01,[1,[1,nonlconstr,options);

Examine the Lagrange multipliers.
lambda.ineqgnonlin
ans =

12.8412
39.2337

Both nonlinear inequality multipliers are nonzero, so both quadratic constraints are active
at the solution.
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Efficiency When Providing a Hessian

The interior-point algorithm with gradients and a Hessian is efficient. Examine the
number of function evaluations.

output
output =

iterations: 9
funcCount: 10
constrviolation: 0
stepsize: 5.3547e-04
algorithm: 'interior-point'
firstorderopt: 1.5851e-05
cgiterations: 0
message: 'Local minimum found that satisfies the constraints.

Optimization compl...'
fmincon used just 10 function evaluations to solve the problem.

Compare this to the solution without the Hessian.

options.HessianFcn = [];

[x2,fval2,eflag2,output2,lambda2] = fmincon(fun,[0;0;0],...
[1,01,01,11,[1,[1,nonlconstr,options);

output2

output2 =

iterations: 17
funcCount: 22
constrviolation: ©
stepsize: 2.8475e-04
algorithm: 'interior-point'
firstorderopt: 1.7680e-05
cgiterations: 0
message: 'Local minimum found that satisfies the constraints.

Optimization compl...'

This time fmincon used about twice as many iterations and function evaluations. The
solutions are the same to within tolerances.
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Extension to Quadratic Equality Constraints

If you also have quadratic equality constraints, you can use essentially the same
technique. The problem is the same, with the additional constraints

1
§xTJix+piTx+qi =0.

Reformulate your constraints to use the J;, p;, and q; variables. The
lambda.egnonlin(1i) structure has the Lagrange multipliers for equality constraints.

See Also

Related Examples

. “fmincon Interior-Point Algorithm with Analytic Hessian” on page 6-85
More About

. “Including Gradients and Hessians” on page 2-25

. “Including Gradients in Constraint Functions” on page 2-48
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Nonlinear Equality and Inequality Constraints

You can include nonlinear constraints by writing a function that computes both equality
and inequality constraint values. A nonlinear constraint function has the syntax

[c,ceq] = nonlinconstr(x)

The function c(x) represents the constraint c(x) <= 0. The function ceq(x)
represents the constraint ceq(x) = 0.

Note You must have the nonlinear constraint function return both c(x) and ceq(x),
even if you have only one type of nonlinear constraint. If a constraint does not exist, have
the function return [] for that constraint.

For example, if you have the nonlinear equality constraint x% +x9 =1 and the nonlinear
inequality constraint x;x, = -10, rewrite them as

x%+x2—1=0,
—x1x9 —10<0,

and then solve the problem using the following steps.

For this example, solve the problem

min f(x) = eX (4x% + 2x§ +4x1x9 + 229 + 1) .
x
subject to these nonlinear constraints.

Step 1: Write a file objfun.m.

function f = objfun(x)
f = exp(x(1))*(4*x(1)"242*x(2)"2+4*x (1) *x(2)+2*x(2)+1);

Step 2: Write a file confuneq.m for the nonlinear constraints.

function [c,ceq] = confuneq(x)
% Nonlinear inequality constraints
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c = -x(1)*x(2) - 10;
% Nonlinear equality constraints
ceq = x(1)"2 + x(2) - 1;

Step 3: Invoke constrained optimization routine.

x0 = [-1,1]; % Make a starting guess at the solution

options = optimoptions(@fmincon, 'Algorithm', 'sqp');

[x,fval] = fmincon(@objfun,x0,[1,[1,[1,[1,[1,I[1,...
@confuneq,options);

After 21 function evaluations, the solution produced is
x, fval
X =

-0.7529 0.4332

fval =
1.5093

[c,ceq] = confuneq(x) % Check the constraint values at x

C =
-9.6739

ceq =
-2.2204e-16

Note that ceq is equal to 0 within the default tolerance on the constraints of 1.0e-006
and that c is less than or equal to 0, as desired.

See Also
Related Examples

. “Nonlinear Inequality Constraints” on page 6-80
. “Optimization App with the fmincon Solver” on page 6-98
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Optimization App with the fmincon Solver

This example shows how to use the Optimization app with the fmincon solver to
minimize a quadratic subject to linear and nonlinear constraints and bounds.

Note The Optimization app warns that it will be removed in a future release.

Consider the problem of finding [x;, x;] that solves

min f(x) = x% + x%
X

subject to the constraints

0.5<x; (bound)
—x1—x9+1<0 (linear inequality)
—x% - x% +1<0
—9x2 x5 +9<0 , , ,
9 (nonlinear inequality)
—x] +x9 <0

- x% +x <0
The starting guess for this problem is x; = 3 and x, = 1.

Step 1: Write a file objecfun.m for the objective function.

function f = objecfun(x)
f = x(1)"2 + x(2)"2;

Step 2: Write a file nonlconstr.m for the nonlinear constraints.

function [c,ceq] nonlconstr(x)
c = [-x(1)"2 - x(2)"2 + 1;
2)"2 + 9;

(1)"2 + x(
(2)72 + x(
ceq = [];

2)
-9*x(1)72 - x(
2)
1)

I;

-X
-X
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Step 3: Set up and run the problem with the Optimization
app.
Enter optimtool in the Command Window to open the Optimization app.
Select fmincon from the selection of solvers and change the Algorithm field to

Active set.
Solvern frincon - Constrained nonlinear minimization -
Algorithm: | Active set i

3 Enter @objecfun in the Objective function field to call the objecfun.m file.
Enter [3; 1] in the Start point field.

Objective function: | @objecfun -
Derivatives: Approximated by solhver -
Start point: [3:1]

5 Define the constraints.
* Set the bound 0.5 =< x; by entering [0.5, -Inf] in the Lower field. The -Inf
entry means there is no lower bound on x,.

* Set the linear inequality constraint by entering [-1 -1] in the A field and enter
-1in the b field.

» Set the nonlinear constraints by entering @nonlconstr in the Nonlinear
constraint function field.

Constraints:

Linear inequalities: A [-1-1] b: -1
Linear equalities: Aeq: beq:
Bounds: Lower: |[0.5,-Inf] Uppern:

Maonlinear constraint function: | @nonlconstr

Derivatives: Approximated by solver -
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6-100

In the Options pane, expand the Display to command window option if necessary,
and select Iterative to show algorithm information at the Command Window for
each iteration.

[ = Display to command window

Level of display: :iterative

Click the Start button as shown in the following figure.

Run salver and view results

Sta * Pause Stop

Current iteration: | Clear Results |

When the algorithm terminates, under Run solver and view results the following
information is displayed:



Optimization App with the fmincon Solver

Run solver and view results

Pause Stop
Current iteration: ﬂ Clear Results

Optimization running.
Objective function value: 2.0000000258595303
Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the default value of the function tolerance,
and constraints are satisfied to within the default value of the constraint

tolerance,

AW

Final point:

Index = Value
1 1
2 1

* The Current iteration value when the algorithm terminated, which for this
example is 7.

* The final value of the objective function when the algorithm terminated:

Objective function value: 2.0000000268595803
* The algorithm termination message:
Local minimum found that satisfies the constraints.
Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,
and constraints are satisfied to within the default value of the constraint tolerance.

* The final point, which for this example is

1
1

In the Command Window, the algorithm information is displayed for each iteration:

Max Line search Directional First-order
Iter F-count f(x) constraint steplength derivative optimality Procedure
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6-102

See Also

3
6
9
12
15
18
21

o WNKFO

10
4.84298
4.0251
2.42704
2.03615
2.00033
2

2

-0.1322
-0.01168
-0.03214
-0.004728
-5.596e-005
-5.327e-009

e i

-5
-4
-3
-3
-2
-2

.22
.39
.85
.04
.82
.81

Local minimum found that satisfies the constraints.

1.
4.
1.

Infeasible start point

74

08 Hessian modified twice
09

0.995 Hessian modified twice
0.0664 Hessian modified twice
0.000522 Hessian modified twice

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the default value of the function tolerance,
and constraints are satisfied to within the default value of the constraint tolerance.

Active inequalities (to within options.ConstraintTolerance =

lower

upper

ineqlin

Related Examples
“Solve a Constrained Nonlinear Problem” on page 1-5

inegnonlin
3
4
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Minimization with Bound Constraints and Banded
Preconditioner

The goal in this problem is to minimize the nonlinear function

n n/2
F) =1+ |(3=2x;)x; = g = xq + 17+ Y [+ 270/,
i=1 =1

such that -10.0 = x; = 10.0, where n is 800 (n should be a multiple of 4), p = 7/3, and
Xo=X;4+1=0.

Step 1: Write a file tbroyfg.m that computes the objective
function and the gradient of the objective

The tbroyfg.m file computes the function value and gradient. This file is long and is not
included here. You can see the code for this function using the command

type tbroyfg

The sparsity pattern of the Hessian matrix has been predetermined and stored in the file
tbroyhstr.mat. The sparsity structure for the Hessian of this problem is banded, as you
can see in the following spy plot.

load tbroyhstr
spy(Hstr)
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800

1] 100 200 300 400 500 60O 700 80O
nz = 4794

In this plot, the center stripe is itself a five-banded matrix. The following plot shows the
matrix more clearly:

spy(Hstr(1:20,1:20))
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Use optimoptions to set the HessPattern parameter to Hstr. When a problem as
large as this has obvious sparsity structure, not setting the HessPattern parameter
requires a huge amount of unnecessary memory and computation. This is because
fmincon attempts to use finite differencing on a full Hessian matrix of 640,000 nonzero
entries.

You must also set the SpecifyObjectiveGradient parameter to true using
optimoptions, since the gradient is computed in tbroyfg.m. Then execute fmincon as
shown in Step 2 on page 6-106.
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6-106

Step 2: Call a nonlinear minimization routine with a starting
point xstart.

fun = @tbroyfg;

load tbroyhstr % Get Hstr, structure of the Hessian
= 800;
xstart = -ones(n,1); xstart(2:2:n) = 1;

1lb = -10*ones(n,1); ub = -1b;

options = optimoptions('fmincon', 'SpecifyObjectiveGradient', true, 'HessPattern'

"Algorithm', 'trust-region-reflective');

[x,fval,exitflag,output] =
fmincon(fun,xstart, [],[],[] [1,lb,ub,[],0options);

The exitflag, fval, first-order optimality measure (output.firstorderopt), and
number of iterations (output.iterations) are:

exitflag, fval,output.firstorderopt,output.iterations
exitflag =

3

fval =

270.4790

ans

0.0163

ans

7

For bound constrained problems, the first-order optimality is the infinity norm of v . *g,
where v is defined as in “Box Constraints” on page 6-25, and g is the gradient.

Because of the five-banded center stripe, you can improve the solution by using a five-
banded preconditioner instead of the default diagonal preconditioner. Using the
optimoptions function, reset the PrecondBandWidth parameter to 2 and solve the

,Hstr, ..
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problem again. (The bandwidth is the number of upper (or lower) diagonals, not counting
the main diagonal.)

fun = @tbroyfg;

load tbroyhstr % Get Hstr, structure of the Hessian
n = 800;
xstart = -ones(n,1); xstart(2:2:n,1) = 1;

1b = -10*ones(n,1); ub = -1b;

options = optimoptions('fmincon', 'SpecifyObjectiveGradient', true, 'HessPattern', Hstr,

'"Algorithm', 'trust-region-reflective', 'PrecondBandWidth',2);

[x,fval,exitflag,output] = ...
fmincon(fun,xstart,[1,[1,[1,[1,lb,ub,[],0options);

The number of iterations increases by two. But the first-order optimality measure is
reduced by a factor of 1e-3:

exitflag, fval,output.firstorderopt,output.iterations
exitflag =
3

fval =

270.4790

ans =

7.5340e-05

ans =
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Minimization with Linear Equality Constraints

6-108

The trust-region reflective method for fmincon can handle linear equality constraints if
no other constraints exist. Suppose you want to minimize

oo 5 (o)

=1

subject to some linear equality constraints. The objective function is coded in the function
brownfgh.m. This example takes n = 1000. Furthermore, the browneq.mat file
contains matrices Aeq and beq that represent the linear constraints Aeq-x = beq. Aeq has
100 rows representing 100 linear constraints (so Aeq is a 100-by-1000 matrix).

Step 1: Write a file brownfgh.m that computes the objective
function, the gradient of the objective, and the sparse
tridiagonal Hessian matrix.

The file is lengthy so is not included here. View the code with the command

type brownfgh

Because brownfgh computes the gradient and Hessian values as well as the objective
function, you need to use optimoptions to indicate that this information is available in
brownfgh, using the SpecifyObjectiveGradient and Hessian options.

The sparse matrix Aeq and vector beq are available in the file browneq.mat:

load browneq

The linear constraint system is 100-by-1000, has unstructured sparsity (use spy (Aeq) to
view the sparsity structure), and is not too badly ill-conditioned:

condest (Aeg*Aeq')
ans =
2.9310e+006
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Step 2: Call a nonlinear minimization routine with a starting
point xstart.

fun = @brownfgh;

load browneq % Get Aeq and beq, the linear equalities
n = 1000;
xstart = -ones(n,1l); xstart(2:2:n) = 1;

options = optimoptions('fmincon', 'SpecifyObjectiveGradient', true, 'HessianFcn', 'objecti
"Algorithm', 'trust-region-reflective');
[x,fval,exitflag,output] = ...
fmincon(fun,xstart,[]1,[],Aeq,beq,[]1,[]1,[],options);

fmincon prints the following exit message:
Local minimum possible.
fmincon stopped because the final change in function value relative to

its initial value is less than the default value of the function tolerance.

The exitflag value of 3 also indicates that the algorithm terminated because the
change in the objective function value was less than the tolerance FunctionTolerance.
The final function value is given by fval. Constraints are satisfied, as you see in
output.constrviolation

exitflag, fval,output.constrviolation
exitflag =

3

fval =

205.9313

ans =

2.2071e-13

The linear equalities are satisfied at x.

norm(Aeqg*x-beq)
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ans =
1.1858e-12
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Minimization with Dense Structured Hessian, Linear
Equalities

In this section...
“Hessian Multiply Function for Lower Memory” on page 6-111

“Step 1: Write a file brownvv.m that computes the objective function, the gradient, and
the sparse part of the Hessian.” on page 6-112

“Step 2: Write a function to compute Hessian-matrix products for H given a matrix Y.” on
page 6-112

“Step 3: Call a nonlinear minimization routine with a starting point and linear equality
constraints.” on page 6-113

“Preconditioning” on page 6-115

Hessian Multiply Function for Lower Memory

The fmincon interior-point and trust-region-reflective algorithms, and the
fminunc trust-region algorithm can solve problems where the Hessian is dense but
structured. For these problems, fmincon and fminunc do not compute H*Y with the
Hessian H directly, because forming H would be memory-intensive. Instead, you must
provide fmincon or fminunc with a function that, given a matrix Y and information
about H, computes W = H*Y.

In this example, the objective function is nonlinear and linear equalities exist so fmincon
is used. The description applies to the trust-region reflective algorithm; the fminunc
trust-region algorithm is similar. For the interior-point algorithm, see the
HessianMultiplyFcn option in “Hessian Multiply Function” on page 15-82. The
objective function has the structure

f(x)z};(x)—%xTVVTx,

where V'is a 1000-by-2 matrix. The Hessian of f'is dense, but the Hessian of fis sparse.

If the Hessian of f is H , then H, the Hessian of f,is

H=H-vT,
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6-112

To avoid excessive memory usage that could happen by working with H directly, the
example provides a Hessian multiply function, hmfleql. This function, when passed a

matrix Y, uses sparse matrices Hinfo, which corresponds to H,and Vto compute the
Hessian matrix product

W = H*Y = (Hinfo - V*V')*Y

In this example, the Hessian multiply function needs H and V to compute the Hessian
matrix product. V is a constant, so you can capture V in a function handle to an
anonymous function.

However, H is not a constant and must be computed at the current x. You can do this by

computing H in the objective function and returning H as Hinfo in the third output
argument. By using optimoptions to set the 'Hessian' optionsto 'on', fmincon
knows to get the Hinfo value from the objective function and pass it to the Hessian
multiply function hmfleql.

Step 1: Write a file brownvv.m that computes the objective
function, the gradient, and the sparse part of the Hessian.

The example passes brownvv to fmincon as the objective function. The brownvv.m file
is long and is not included here. You can view the code with the command

type brownvv

Because brownvv computes the gradient as well as the objective function, the example
(Step 3 on page 6-113) uses optimoptions to set the SpecifyObjectiveGradient
option to true.

Step 2: Write a function to compute Hessian-matrix products
for H given a matrix Y.

Now, define a function hmfleql that uses Hinfo, which is computed in brownvv, and V,
which you can capture in a function handle to an anonymous function, to compute the
Hessian matrix product W where W = H*Y = (Hinfo - V*V')*Y. This function must
have the form

W = hmflegl(Hinfo,Y)


matlab:edit brownvv.m
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The first argument must be the same as the third argument returned by the objective
function brownvv. The second argument to the Hessian multiply function is the matrix Y
(of W = H*Y).

Because fmincon expects the second argument Y to be used to form the Hessian matrix
product, Y is always a matrix with n rows where n is the number of dimensions in the
problem. The number of columns in Y can vary. Finally, you can use a function handle to
an anonymous function to capture V, so V can be the third argument to 'hmfleqq’.

function W = hmfleql(Hinfo,Y,V);

%HMFLEQl Hessian-matrix product function for BROWNVV objective.
W = hmfleql(Hinfo,Y,V) computes W = (Hinfo-V*V')*Y
where Hinfo is a sparse matrix computed by BROWNVV
and V is a 2 column matrix.

= Hinfo*Y - V*(V'*Y);

= o° o° o°

Note The function hmfleql is available in the optimdemos folder as hmfleql.m.

Step 3: Call a nonlinear minimization routine with a starting
point and linear equality constraints.

Load the problem parameter, V, and the sparse equality constraint matrices, Aeq and beq,
from fleql.mat, which is available in the optimdemos folder. Use optimoptions to set
the SpecifyObjectiveGradient option to true and to set the HessianMultiplyFcn
option to a function handle that points to hmfleql. Call fmincon with objective function
brownvv and with V as an additional parameter:

function [fval,exitflag,output,x] = runfleql
% RUNFLEQl demonstrates 'HessMult' option for FMINCON with linear
% equalities.
problem = load('fleql'); % Get V, Aeq, beq
V = problem.V; Aeq = problem.Aeq; beqg = problem.beq;
n = 1000; % problem dimension
xstart = -ones(n,1); xstart(2:2:n,1) = ones(length(2:2:n),1); % starting point
options = optimoptions(@fmincon, ...
"Algorithm', 'trust-region-reflective’, ...
'SpecifyObjectiveGradient', true, .
'HessianMultiplyFcn',@(Hinfo,Y)hmfleql(Hinfo,Y,V), ...
'Display’', 'iter’', ...
'OptimalityTolerance',le-9,...
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'"FunctionTolerance',le-9);
[x,fval,exitflag,output] = fmincon(@(x)brownvv(x,V),xstart,[],[],Aeq,beq,[],[],
[1,options);

To run the preceding code, enter
[fval,exitflag,output,x] = runfleql;

Because the iterative display was set using optimoptions, this command generates the
following iterative display:

Norm of First-order
Iteration f(x) step optimality CG-iterations
0 2297.63 1.41e+03
1 1084.59 6.3903 578 1
2 1084.59 100 578 3
3 1084.59 25 578 0
4 1084.59 6.25 578 0
5 1047.61 1.5625 240 0
6 761.592 3.125 62.4 2
7 761.592 6.25 62.4 4
8 746.478 1.5625 163 0
9 546.578 3.125 84.1 2
10 274.311 6.25 26.9 2
11 55.6193 11.6597 40 2
12 55.6193 25 40 3
13 22.2964 6.25 26.3 0
14 -49.516 6.25 78 1
15 -93.2772 1.5625 68 1
16 -207.204 3.125 86.5 1
17 -434.162 6.25 70.7 1
18 -681.359 6.25 43.7 2
19 -681.359 6.25 43.7 4
20 -698.041 1.5625 191 0
21 -723.959 3.125 256 7
22 -751.33 0.78125 154 3
23 -793.974 1.5625 24.4 3
24 -820.831 2.51937 6.11 3
25 -823.069 0.562132 2.87 3
26 -823.237 0.196753 0.486 3
27 -823.245 0.0621202 0.386 3
28 -823.246 0.0199951 0.11 6
29 -823.246 0.00731333 0.0404 7
30 -823.246 0.00505883 0.0185 8
31 -823.246 0.00126471 0.00268 9
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32 -823.246 0.00149326 0.00521 9
33 -823.246 0.000373314 0.00091 9

Local minimum possible.

fmincon stopped because the final change in function value relative to
its initial value is less than the selected value of the function tolerance.

Convergence is rapid for a problem of this size with the PCG iteration cost increasing
modestly as the optimization progresses. Feasibility of the equality constraints is
maintained at the solution.

problem = load('fleql'); % Get V, Aeq, beq
V = problem.V; Aeq = problem.Aeq; beq = problem.beq;
norm(Aeq*x-beq, inf)

ans =
1.8874e-14

Preconditioning

In this example, fmincon cannot use H to compute a preconditioner because H only exists
implicitly. Instead of H, fmincon uses Hinfo, the third argument returned by brownvv,
to compute a preconditioner. Hinfo is a good choice because it is the same size as H and
approximates H to some degree. If Hinfo were not the same size as H, fmincon would
compute a preconditioner based on some diagonal scaling matrices determined from the
algorithm. Typically, this would not perform as well.
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Symbolic Math Toolbox Calculates Gradients and
Hessians

6-116

If you have a Symbolic Math Toolbox license, you can easily calculate analytic gradients
and Hessians for objective and constraint functions. There are two relevant Symbolic
Math Toolbox functions:

* jacobian generates the gradient of a scalar function, and generates a matrix of the
partial derivatives of a vector function. So, for example, you can obtain the Hessian
matrix, the second derivatives of the objective function, by applying jacobian to the
gradient. Part of this example shows how to use jacobian to generate symbolic
gradients and Hessians of objective and constraint functions.

* matlabFunction generates either an anonymous function or a file that calculates the
values of a symbolic expression. This example shows how to use matlabFunction to
generate files that evaluate the objective and constraint function and their derivatives
at arbitrary points.

Consider the electrostatics problem of placing 10 electrons in a conducting body. The
electrons will arrange themselves so as to minimize their total potential energy, subject to
the constraint of lying inside the body. It is well known that all the electrons will be on the
boundary of the body at a minimum. The electrons are indistinguishable, so there is no
unique minimum for this problem (permuting the electrons in one solution gives another
valid solution). This example was inspired by Dolan, Moré, and Munson [58].

This example is a conducting body defined by the following inequalities:
2 < —|x| -y (6-60)
x2+y2+(z+1)231. (6-61)

This body looks like a pyramid on a sphere.
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There is a slight gap between the upper and lower surfaces of the figure. This is an
artifact of the general plotting routine used to create the figure. This routine erases any
rectangular patch on one surface that touches the other surface.

The syntax and structures of the two sets of toolbox functions differ. In particular,
symbolic variables are real or complex scalars, but Optimization Toolbox functions pass
vector arguments. So there are several steps to take to generate symbolically the
objective function, constraints, and all their requisite derivatives, in a form suitable for
the interior-point algorithm of fmincon:

1  “Create the Variables” on page 6-118
2 “Include the Linear Constraints” on page 6-119
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“Create the Nonlinear Constraints, Their Gradients and Hessians” on page 6-121
“Create the Objective Function, Its Gradient and Hessian” on page 6-121
“Create the Objective Function File” on page 6-122

“Create the Constraint Function File” on page 6-123

“Generate the Hessian Files” on page 6-124

“Run the Optimization” on page 6-124

© 0 N O U A~ W

“Clear the Symbolic Variable Assumptions” on page 6-129

To see the efficiency in using gradients and Hessians, see “Compare to Optimization
Without Gradients and Hessians” on page 6-127.

Create the Variables

Generate a symbolic vector x as a 30-by-1 vector composed of real symbolic variables
xij, 1 between 1 and 10, and j between 1 and 3. These variables represent the three
coordinates of electron i: xil corresponds to the x coordinate, xi2 corresponds to the y
coordinate, and xi3 corresponds to the z coordinate.

x = cell(3, 10);
for i = 1:10
for j = 1:3
x{j,1i} = sprintf('x%d%d',i,j);
end
end
X = X(:); % now x is a 30-by-1 vector
X = sym(x, 'real');

The vector X is:

X
X =

x11
x12
x13
x21
X22
Xx23
x31
x32
x33
x41
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x42
x43
x51
x52
x53
x61
X62
X63
x71
x72
x73
x81
x82
x83
x91
x92
x93
x101
x102
x103

Include the Linear Constraints
Write the linear constraints in “Equation 6-60”,
z =< -|x] - lvl,

as a set of four linear inequalities for each electron:

xi3 - xil - xi2 < 0
xi3 - xil + Xi2 < 0
xi3 + xil - Xi2 < 0
xi3 + xil + Xi2 < 0

Therefore there are a total of 40 linear inequalities for this problem.
Write the inequalities in a structured way:
B=701,1,1;-1,1,1;1,-1,1;-1,-1,1];

A = zeros(40,30);

for i=1:10
A(4*%i-3:4*%i,3*1-2:3*i) = B;
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end
b = zeros(40,1);

You can see that A*x = b represents the inequalities:

A*X
ans =
x11 + x12 + x13
x12 - x11 + x13
x11 - x12 + x13
x13 - x12 - x11
x21 + x22 + x23
x22 - x21 + x23
x21 - x22 + x23
X23 - x22 - x21
x31 + x32 + x33
x32 - x31 + x33
x31 - x32 + x33
X33 - x32 - x31
x41 + x42 + x43
x42 - x41 + x43
x41 - x42 + x43
x43 - x42 - x41
x51 + x52 + x53
x52 - x51 + x53
x51 - x52 + x53
x53 - x52 - x51
X61 + x62 + x63
X62 - x61 + x63
X61 - x62 + x63
X63 - x62 - x61
X71 + x72 + x73
Xx72 - x71 + x73
Xx71 - x72 + x73
X733 - x72 - x71
x81 + x82 + x83
x82 - x81 + x83
x81 - x82 + x83
x83 - x82 - x81
Xx91 + x92 + x93
Xx92 - x91 + x93
Xx91 - x92 + x93

x93 - x92 - x91
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x101 + x102 + x103
x102 - x101 + x103
x101 - x102 + x103
x103 - x102 - x101

Create the Nonlinear Constraints, Their Gradients and
Hessians

The nonlinear constraints in “Equation 6-61”,

acz+y2+(z+1)2 <1,

are also structured. Generate the constraints, their gradients, and Hessians as follows:

C sym(zeros(1,10));

i 1:10;
C (x(3*1-2).72 + x(3*i-1).72 + (x(3*1)+1).72 - 1)."';
gradc = jacobian(c,x).'; % .' performs transpose

hessc = cell(1l, 10);
for i = 1:10

hessc{i} = jacobian(gradc(:,1i),x);
end

The constraint vector c is a row vector, and the gradient of c(1i) is represented in the ith
column of the matrix gradc. This is the correct form, as described in “Nonlinear
Constraints” on page 2-48.

The Hessian matrices, hessc{1}...hessc{10}, are square and symmetric. It is better to
store them in a cell array, as is done here, than in separate variables such as
hesscl, ..., hesssclo.

Use the . ' syntax to transpose. The ' syntax means conjugate transpose, which has

different symbolic derivatives.

Create the Objective Function, Its Gradient and Hessian

The objective function, potential energy, is the sum of the inverses of the distances
between each electron pair:
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6-122

energy = z ﬁ
i Ay

i<j

The distance is the square root of the sum of the squares of the differences in the
components of the vectors.

Calculate the energy, its gradient, and its Hessian as follows:

energy = sym(0);
for i = 1:3:25
for j = i+3:3:28
dist = x(i:i+2) - x(j:j+2);
energy = energy + 1/sqrt(dist.'*dist);

end
end
gradenergy = jacobian(energy,x)."';
hessenergy = jacobian(gradenergy,x);

Create the Objective Function File

The objective function should have two outputs, energy and gradenergy. Put both
functions in one vector when calling matlabFunction to reduce the number of
subexpressions that matlabFunction generates, and to return the gradient only when
the calling function (fmincon in this case) requests both outputs. This example shows
placing the resulting files in your current folder. Of course, you can place them anywhere
you like, as long as the folder is on the MATLAB path.

currdir = [pwd filesep]; % You may need to use currdir = pwd
filename = [currdir, 'demoenergy.m'];
matlabFunction(energy,gradenergy, 'file', filename, 'vars', {x});

This syntax causes matlabFunction to return energy as the first output, and
gradenergy as the second. It also takes a single input vector {x} instead of a list of
inputs x11, ..., x103.

The resulting file demoenergy.m contains, in part, the following lines or similar ones:

function [energy,gradenergy] = demoenergy(inl)
%SDEMOENERGY
% [ENERGY, GRADENERGY] = DEMOENERGY (IN1)
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x101 = inl1(28,:);

energy = 1./t140.7(1./2) + ...;
if nargout > 1

(_:,];'z.adenergy = [(t174.*%(t185 - 2.*x11))./2 - ...];
end

This function has the correct form for an objective function with a gradient; see “Writing
Scalar Objective Functions” on page 2-23.

Create the Constraint Function File

Generate the nonlinear constraint function, and put it in the correct format.

filename = [currdir, 'democonstr.m'];
matlabFunction(c,[],gradc,[],'file',filename, 'vars', {x}, ...
'outputs',{'c','ceq', 'gradc', 'gradceq'});

The resulting file democonstr.m contains, in part, the following lines or similar ones:

function [c,ceq,gradc,gradceq] = democonstr(inl)
%DEMOCONSTR
% [C,CEQ,GRADC,GRADCEQ] = DEMOCONSTR(IN1)

x101 = inl1(28,:);

c = [t417.72 + ...1;
if nargout > 1
ceq = [1;
end
if nargout > 2
gradc = [2.*x11,...];
end
if nargout > 3
gradceq = [];
end

This function has the correct form for a constraint function with a gradient; see
“Nonlinear Constraints” on page 2-48.
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Generate the Hessian Files

To generate the Hessian of the Lagrangian for the problem, first generate files for the
energy Hessian and for the constraint Hessians.

The Hessian of the objective function, hessenergy, is a very large symbolic expression,
containing over 150,000 symbols, as evaluating size(char(hessenergy)) shows. So it
takes a substantial amount of time to run matlabFunction(hessenergy).

To generate a file hessenergy.m, run the following two lines:

filename = [currdir, 'hessenergy.m'];
matlabFunction(hessenergy, 'file',filename, 'vars', {x});

In contrast, the Hessians of the constraint functions are small, and fast to compute:

for i = 1:10
ii = num2str(i);
thename = ['hessc',iil;
filename = [currdir,thename,'.m'];
matlabFunction(hessc{i}, 'file', filename, 'vars', {x});
end

After generating all the files for the objective and constraints, put them together with the
appropriate Lagrange multipliers in a file hessfinal.m as follows:

function H = hessfinal(X, lambda)

Call the function hessenergy to start
= hessenergy(X);

T o o°

% Add the Lagrange multipliers * the constraint Hessians
H = H + hesscl(X) * lambda.inegnonlin(1);

H = H + hessc2(X) * lambda.inegnonlin(2);

H = H + hessc3(X) * lambda.inegnonlin(3);

H = H + hessc4(X) * lambda.inegnonlin(4);

H = H + hessc5(X) * lambda.inegnonlin(5);

H = H + hessc6(X) * lambda.inegnonlin(6);

H = H + hessc7(X) * lambda.inegnonlin(7);

H = H + hessc8(X) * lambda.inegnonlin(8);

H = H + hessc9(X) * lambda.inegnonlin(9);

H = H + hessclO(X) * lambda.inegnonlin(10);

Run the Optimization

Start the optimization with the electrons distributed randomly on a sphere of radius 1/2
centered at [0,0,-1]:
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rng default % for reproducibility
Xinitial = randn(3,10); % columns are normal 3-D vectors
for j=1:10
Xinitial(:,j) = Xinitial(:,j)/norm(Xinitial(:,j))/2;
% this normalizes to a 1/2-sphere
end
Xinitial(3,:) = Xinitial(3,:) - 1; % center at [0,0,-1]
Xinitial = Xinitial(:); % Convert to a column vector

Set the options to use the interior-point algorithm, and to use gradients and the Hessian:

options = optimoptions(@fmincon, 'Algorithm', 'interior-point"', 'SpecifyObjectiveGradient
'SpecifyConstraintGradient',true, 'HessianFcn',@hessfinal, 'Display’', 'final');

Call fmincon:

[xfinal fval exitflag output] = fmincon(@demoenergy,Xinitial, ...
A,b,[1,[1,[1,[],@democonstr,options);

The solution takes 19 iterations and only 28 function evaluations:
xfinal, fval,exitflag,output.iterations,output.funcCount
xfinal =

-0.0317
0.0317
-1.9990
0.6356
-0.6356
-1.4381
0.0000
-0.0000
-0.0000
0.0000
-1.0000
-1.0000
1.0000
-0.0000
-1.0000
-1.0000
-0.0000
-1.0000
0.6689
0.6644

6-125



6 Nonlinear algorithms and examples

-1.3333
-0.6667

0.6667
-1.3333

0.0000

1.0000
-1.0000
-0.6644
-0.6689
-1.3333

fval =

34.1365

exitflag =

1

ans =

ans =
28

Even though the initial positions of the electrons were random, the final positions are
nearly symmetric:
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Compare to Optimization Without Gradients and Hessians

The use of gradients and Hessians makes the optimization run faster and more accurately.
To compare with the same optimization using no gradient or Hessian information, set the
options not to use gradients and Hessians:

options = optimoptions(@fmincon, 'Algorithm', 'interior-point’', ...
'Display', 'final');

[xfinal2 fval2 exitflag2 output2] = fmincon(@demoenergy,Xinitial,...
A,b,[1,[1,[1,[]1,@democonstr,options);

The output shows that fmincon found an equivalent minimum, but took more iterations
and many more function evaluations to do so.
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xfinal2, fval2,exitflag2,output2.iterations,output2.funcCount
xfinal2 =

0.0000
1.0000
-1.0000
0.6689
-0.6644
-1.3334
-0.6644
0.6689
-1.3334
0.0000
-1.0000
-1.0000
0.6357
0.6357
-1.4380
-0.0317
-0.0317
-1.9990
1.0000
0.0000
-1.0000
-1.0000
0.0000
-1.0000
0.0000
0.0000
-0.0000
-0.6667
-0.6667
-1.3334

fval2 =

34.1365

exitflag2 =

1

ans =

ans =

2435

In this run the number of function evaluations (in output2. funcCount) is 2435
compared to 28 (in output. funcCount) when using gradients and Hessian.
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Clear the Symbolic Variable Assumptions

The symbolic variables in this example have the assumption, in the symbolic engine
workspace, that they are real. To clear this assumption from the symbolic engine
workspace, it is not sufficient to delete the variables. Clear the variable assumptions by
using syms:

syms X
Verify that the assumptions are empty.
assumptions(x)

ans =

Empty sym: 1-by-0

See Also

Related Examples

. “Using Symbolic Mathematics with Optimization Toolbox™ Solvers” on page 6-130
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Using Symbolic Mathematics with Optimization
Toolbox™ Solvers

6-130

This example shows how to use the Symbolic Math Toolbox™ functions jacobian and
matlabFunction to provide analytical derivatives to optimization solvers. Optimization
Toolbox™ solvers are usually more accurate and efficient when you supply gradients and
Hessians of the objective and constraint functions.

There are several considerations in using symbolic calculations with optimization
functions:

1

Optimization objective and constraint functions should be defined in terms of a
vector, say x. However, symbolic variables are scalar or complex-valued, not vector-
valued. This requires you to translate between vectors and scalars.

Optimization gradients, and sometimes Hessians, are supposed to be calculated
within the body of the objective or constraint functions. This means that a symbolic
gradient or Hessian has to be placed in the appropriate place in the objective or
constraint function file or function handle.

Calculating gradients and Hessians symbolically can be time-consuming. Therefore
you should perform this calculation only once, and generate code, via
matlabFunction, to call during execution of the solver.

Evaluating symbolic expressions with the subs function is time-consuming. It is
much more efficient to use matlabFunction.

matlabFunction generates code that depends on the orientation of input vectors.
Since fmincon calls the objective function with column vectors, you must be careful
to call matlabFunction with column vectors of symbolic variables.

First Example: Unconstrained Minimization with Hessian

The objective function to minimize is:

. f . . 2 )
flx.x) =log Ik] + 3 — (8 —x)) +(x — 4__:'3:-').

This function is positive, with a unique minimum value of zero attained at x1 = 4/3, x2
=(4/3)"3 - 4/3 = 1.0370...
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We write the independent variables as x1 and X2 because in this form they can be used as
symbolic variables. As components of a vector x they would be written x(1) and x(2).
The function has a twisty valley as depicted in the plot below.

syms x1 x2 real
x = [x1;x2]; % column vector of symbolic variables

f log(1l + 3*(x2 - (x1™3 - x1))7"2 + (x1 - 4/3)"2)
f —
log| (i —%] +3 (= x4 x) +1

fsurf(f,[-2 21, 'ShowContours', 'on")
view(127,38)
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Compute the gradient and Hessian of f:

gradf = jacobian(f,x).' % column gradf

gradf =
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lad |

6 (3x7—1) (—x +x+x) —2x+
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where

! 47 F3 2
F] = [I| _i] +_-‘.I I_I—X]' +.1'|_+xg] +J.

hessf jacobian(gradf,x)

hessf

6 (3x —1)" =36x (—x +x4+x)+2 o
L _— T
¥3 ¥y '

6 [—ﬁx|3+ﬁx|+ﬁx«_._]1
[i3 P—
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where
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o= 522 B ¥3

Y L 2
5y = [x|—§] +3 (—x 7 4x+x) +1

o;=0 (3x —1) (—x7 +x,+x) —2x +%
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The fminunc solver expects to pass in a vector x, and, with the
SpecifyObjectiveGradient option set to true and HessianFcn option set to
'objective', expects a list of three outputs: [f(x),gradf(x),hessf(x)].

matlabFunction generates exactly this list of three outputs from a list of three inputs.
Furthermore, using the vars option, matlabFunction accepts vector inputs.

fh = matlabFunction(f,gradf,hessf, 'vars',{x});

Now solve the minimization problem starting at the point [-1,2]:

options = optimoptions('fminunc',
'SpecifyObjectiveGradient', true,
'HessianFcn', 'objective',
'"Algorithm', 'trust-region',
'‘Display', 'final');
[xfinal, fval,exitflag,output] = fminunc(fh,[-1;2],options)

Local minimum possible.

fminunc stopped because the final change in function value relative to
its initial value is less than the default value of the function tolerance.

xfinal = 2x1I

1.3333
1.0370

fval = 7.6623e-12
exitflag = 3

output = struct with fields:
iterations: 14
funcCount: 15
stepsize: 0.0027
cgiterations: 11
firstorderopt: 3.4391e-05
algorithm: 'trust-region'
message: 'Local minimum possible....
constrviolation: []

Compare this with the number of iterations using no gradient or Hessian information.
This requires the 'quasi-newton' algorithm.
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options = optimoptions('fminunc', 'Display','final', 'Algorithm', 'quasi-newton');
fh2 = matlabFunction(f, 'vars', {x});

% fh2 = objective with no gradient or Hessian

[xfinal, fval,exitflag,output2] = fminunc(fh2,[-1;2],options)

Local minimum found.

Optimization completed because the size of the gradient is less than
the default value of the optimality tolerance.

xfinal = 2x1

1.3333
1.0371

fval = 2.1985e-11
exitflag =1

output2 = struct with fields:
iterations: 18
funcCount: 81
stepsize: 2.1164e-04
lssteplength: 1
firstorderopt: 2.4587e-06
algorithm: 'quasi-newton'
message: 'Local minimum found....'

The number of iterations is lower when using gradients and Hessians, and there are
dramatically fewer function evaluations:

sprintf(['There were %d iterations using gradient'
' and Hessian, but %d without them.'],
output.iterations,output2.iterations)

ans =
'There were 14 iterations using gradient and Hessian, but 18 without them.'

sprintf(['There were %d function evaluations using gradient'
' and Hessian, but %d without them.'],
output.funcCount,output2.funcCount)

ans =
'There were 15 function evaluations using gradient and Hessian, but 81 without them.'
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Second Example: Constrained Minimization Using the fmincon Interior-Point
Algorithm

We consider the same objective function and starting point, but now have two nonlinear
constraints:

Ssinh(x;/5) = x¢
Stanhix;/3) = x5 — 1.

The constraints keep the optimization away from the global minimum point [1.333,1.037].
Visualize the two constraints:

[X,Y] = meshgrid(-2:.01:3);

% Z=1 where the first constraint is satisfied, Z=0 otherwise
Z = 7+ 2*(5*tanh(X./5) >=Y.”2 - 1);

% Z=2 where the second is satisfied, Z=3 where both are
surf(X,Y,Z, 'LineStyle', 'none');

fig = gcf;

fig.Color = 'w'; % white background

view(0,90)

hold on

plot3(.4396, .0373, 4,'o', 'MarkerEdgeColor','r"', 'MarkerSize',8);
% best point

xlabel('x")

ylabel('y")

hold off
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We plotted a small red circle around the optimal point.

Here is a plot of the objective function over the feasible region, the region that satisfies
both constraints, pictured above in dark red, along with a small red circle around the
optimal point:

W = log(l + 3*(Y - (X."3 - X))."2 + (X - 4/3).72);

% W = the objective function

W(Z < 3) = nan; % plot only where the constraints are satisfied

surf(X,Y,W, 'LineStyle', 'none');

view(68,20)

hold on

plot3(.4396, .0373, .8152,'o', 'MarkerEdgeColor','r",
'MarkerSize',8); % best point
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xlabel('x")
ylabel('y")
zlabel('z")
hold off

25

2.

ni 15
14
D-E}
-1
0
15
05 1
® ! 0 '
¥

The nonlinear constraints must be written in the form c(x) <= 0. We compute all the
symbolic constraints and their derivatives, and place them in a function handle using
matlabFunction.

The gradients of the constraints should be column vectors; they must be placed in the
objective function as a matrix, with each column of the matrix representing the gradient
of one constraint function. This is the transpose of the form generated by jacobian, so
we take the transpose below.
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We place the nonlinear constraints into a function handle. fmincon expects the nonlinear
constraints and gradients to be output in the order [c ceq gradc gradceq]. Since
there are no nonlinear equality constraints, we output [ ] for ceq and gradceq.

cl = x1°4 - 5*sinh(x2/5);

c2 = x272 - 5*tanh(x1/5) - 1;

c = [cl c2];

gradc = jacobian(c,x).'; % transpose to put in correct form

constraint = matlabFunction(c,[],gradc,[], 'vars', {x});

The interior-point algorithm requires its Hessian function to be written as a separate
function, instead of being part of the objective function. This is because a nonlinearly
constrained function needs to include those constraints in its Hessian. Its Hessian is the
Hessian of the Lagrangian; see the User's Guide for more information.

The Hessian function takes two input arguments: the position vector x, and the Lagrange
multiplier structure lambda. The parts of the lambda structure that you use for nonlinear
constraints are lambda.inegnonlin and lambda.eqnonlin. For the current
constraint, there are no linear equalities, so we use the two multipliers
lambda.inegnonlin(1) and lambda.ineqgnonlin(2).

We calculated the Hessian of the objective function in the first example. Now we calculate
the Hessians of the two constraint functions, and make function handle versions with
matlabFunction.

hesscl = jacobian(gradc(:,1),x); % constraint = first c column
hessc2 = jacobian(gradc(:,2),x);

hessfh = matlabFunction(hessf, 'vars', {x});

hessclh = matlabFunction(hesscl, 'vars', {x});

hessc2h = matlabFunction(hessc2, 'vars', {x});

To make the final Hessian, we put the three Hessians together, adding the appropriate
Lagrange multipliers to the constraint functions.

myhess = @(x,lambda) (hessfh(x) + ...
lambda.ineqgnonlin(1)*hessclh(x) + ...
lambda.ineqgnonlin(2)*hessc2h(x));

Set the options to use the interior-point algorithm, the gradient, and the Hessian, have
the objective function return both the objective and the gradient, and run the solver:

options = optimoptions('fmincon',
"Algorithm', 'interior-point',
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'SpecifyObjectiveGradient', true,
'SpecifyConstraintGradient', true,
'HessianFcn',myhess,
'Display', 'final');

% fh2 = objective without Hessian

fh2 = matlabFunction(f,gradf, 'vars',{x});

[xfinal, fval,exitflag,output] = fmincon(fh2,[-1;2],...
[1,01,01,01,[1,[],constraint,options)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the default value of the optimality tolerance,
and constraints are satisfied to within the default value of the constraint tolerance.

xfinal = 2x1

0.4396
0.0373

fval = 0.8152
exitflag =1

output = struct with fields:
iterations: 10
funcCount: 13
constrviolation: 0
stepsize: 1.9160e-06
algorithm: 'interior-point'
firstorderopt: 1.9217e-08
cgiterations: 0
message: 'Local minimum found that satisfies the constraints....'

Again, the solver makes many fewer iterations and function evaluations with gradient and
Hessian supplied than when they are not:

options = optimoptions('fmincon', 'Algorithm', 'interior-point',...
'Display', 'final');

% fh3 = objective without gradient or Hessian

fh3 = matlabFunction(f, 'vars', {x});

% constraint without gradient:

constraint = matlabFunction(c,[], 'vars', {x});
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[xfinal, fval,exitflag,output2] = fmincon(fh3,[-1;2], ...
(1,01,01,01,[1,[1,constraint,options)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the default value of the optimality tolerance,
and constraints are satisfied to within the default value of the constraint tolerance.

xfinal = 2x1

0.4396
0.0373

fval = 0.8152
exitflag =1

output2 = struct with fields:
iterations: 17
funcCount: 54
constrviolation: 0
stepsize: 6.0309e-07
algorithm: 'interior-point'
firstorderopt: 3.8435e-07
cgiterations: 0
message: 'Local minimum found that satisfies the constraints....'

sprintf(['There were %d iterations using gradient'
' and Hessian, but %d without them.'],...
output.iterations,output2.iterations)

ans =
'There were 10 iterations using gradient and Hessian, but 17 without them.'

sprintf(['There were %d function evaluations using gradient'
' and Hessian, but %d without them.'],
output. funcCount,output2. funcCount)

ans =
'There were 13 function evaluations using gradient and Hessian, but 54 without them.'
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Cleaning Up Symbolic Variables

The symbolic variables used in this example were assumed to be real. To clear this
assumption from the symbolic engine workspace, it is not sufficient to delete the
variables. You must clear the assumptions of variables using the syntax

assume([x1,x2], 'clear')

All assumptions are cleared when the output of the following command is empty

assumptions([x1,x2])

ans =

Empty sym: 1-by-0

See Also

More About
. “Symbolic Math Toolbox Calculates Gradients and Hessians” on page 6-116



One-Dimensional Semi-Infinite Constraints

One-Dimensional Semi-Infinite Constraints

Find values of x that minimize

. 1 2 .
Kl(x,wl)=s1n(w1x1)cos(w1x2)—m(wl—50) —sin(wyx3)—xg <1,

Ko (x,wy) = sin(wyxq ) cos (wyx; ) — ﬁ(u@ ~50)? —sin (wyxz ) — x5 <1,

for all values of w; and w, over the ranges

1
1

100,
100.

Wy
W

IAIA
IAIA

Note that the semi-infinite constraints are one-dimensional, that is, vectors. Because the
constraints must be in the form K;(x,w;) < 0, you need to compute the constraints as

. 1 2 .
Ky (xwy) = s1n(w1x1)cos(w1xz)—m(wl -50)" —sin(wyx3)—x3-1<0,

Ky (x,wy ) = sin(wyxy ) cos (wyx; ) — ﬁ(wz —50)2 —sin(wyxg)— x5 —1<0.

First, write a file that computes the objective function.

function f = myfun(x,s)
% Objective function
f = sum((x-0.5).72);

Second, write a file mycon.m that computes the nonlinear equality and inequality
constraints and the semi-infinite constraints.

function [c,ceq,K1,K2,s] = mycon(X,s)
% Initial sampling interval
if isnan(s(1,1)),
s =[0.20; 0.2 0];
end
% Sample set
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1:s(1,1):100;
1:5(2,1):100;

% Semi-infinite constraints

K1 = sin(wl*X(1l)).*cos(wl*X(2)) - 1/1000*(wl-50).72 -...
sin(wl*X(3))-X(3)-1;

K2 = sin(w2*X(2)).*cos(w2*X(1)) - 1/1000*(w2-50).72 -...
sin(w2*X(3))-X(3)-1;

% No finite nonlinear constraints
c =1[1; ceg=I[];

% Plot a graph of semi-infinite constraints
plot(wl,K1,'-"',w2,K2,"':")
title('Semi-infinite constraints')

drawnow

Then, invoke an optimization routine.

x0 = [0.5; 0.2; 0.3]; % Starting guess
[x,fval] = fseminf(@myfun,x0,2,@mycon);

After eight iterations, the solution is

X
X =

0.6675
0.3012
0.4022

The function value and the maximum values of the semi-infinite constraints at the solution
X are

fval
fval =
0.0771

[c,ceq,K1,K2] = mycon(x,NaN); % Initial sampling interval
max (K1)
ans =
-0.0077
max (K2)
ans =
-0.0812

A plot of the semi-infinite constraints is produced.
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N

0 10 20 30 40 50 60 70 80 90 100

This plot shows how peaks in both constraints are on the constraint boundary.

The plot command inside mycon.m slows down the computation. Remove this line to
improve the speed.

See Also

fseminf

Related Examples

. “Two-Dimensional Semi-Infinite Constraint” on page 6-147
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. “Analyzing the Effect of Uncertainty Using Semi-Infinite Programming” on page 6-
150
. “Analyzing the Effect of Uncertainty Using Semi-Infinite Programming”
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Two-Dimensional Semi-Infinite Constraint
Find values of x that minimize

) = (x1 - 0.2)2 + (X,- 0.2)2 + (X5- 0.2)?,

. 1 2 .
Ky (x,w)= sm(wlxl)cos(w2x2)—m(w1 -50)" —sin(wyxg)— 23 + ...

Sln(u)2x2 ) Cos (wlxl) - ]_Olm(w?' - 50)2 —sin (LU2x3 ) — X3 < 15,

for all values of w; and w, over the ranges

1
1

100,
100,

Wy
W

IAIA
IAIA

starting at the point x = [0.25,0.25,0.25].
Note that the semi-infinite constraint is two-dimensional, that is, a matrix.

First, write a file that computes the objective function.

function f = myfun(x,s)
% Objective function
f = sum((x-0.2).72);

Second, write a file for the constraints, called mycon.m. Include code to draw the surface
plot of the semi-infinite constraint each time mycon is called. This enables you to see how
the constraint changes as X is being minimized.

function [c,ceq,K1l,s] = mycon(X,s)
% Initial sampling interval
if isnan(s(1,1)),
s = [2 2];
end

% Sampling set

wlx = 1:s(1,1):100;

wly = 1:5(1,2):100;

[wx,wy] = meshgrid(wlx,wly);
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% Semi-infinite constraint

K1 = sin(wx*X(1)).*cos(wx*X(2))-1/1000*(wx-50).72 -...
sin(wx*X(3))-X(3)+sin(wy*X(2)).*cos(wx*X(1))-...
1/1000* (wy-50).72-sin(wy*X(3))-X(3)-1.5;

o°

No finite nonlinear constraints

c =[1; ceg=I[1];
% Mesh plot
m = surf(wx,wy,K1, 'edgecolor', 'none', 'facecolor', 'interp');

camlight headlight
title('Semi-infinite constraint')
drawnow

Next, invoke an optimization routine.

x0 = [0.25, 0.25, 0.25]1; % Starting guess
[x,fval] = fseminf(@myfun,x0,1,@mycon)

After nine iterations, the solution is

X
X =

0.2523 0.1715 0.1938

and the function value at the solution is

fval
fval =
0.0036

The goal was to minimize the objective f(x) such that the semi-infinite constraint satisfied
K;(x,w) = 1.5. Evaluating mycon at the solution x and looking at the maximum element of
the matrix K1 shows the constraint is easily satisfied.

[c,ceq,K1] = mycon(x,[0.5,0.5]); % Sampling interval 0.5
max (max(K1))

ans =
-0.0370

This call to mycon produces the following surf plot, which shows the semi-infinite
constraint at x.



See Also

Semi-infinite constraint

See Also

fseminf

Related Examples
. “One-Dimensional Semi-Infinite Constraints” on page 6-143

. “Analyzing the Effect of Uncertainty Using Semi-Infinite Programming” on page 6-
150

. “Analyzing the Effect of Uncertainty Using Semi-Infinite Programming”
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Analyzing the Effect of Uncertainty Using Semi-Infinite
Programming

6-150

This example shows how to use semi-infinite programming to investigate the effect of
uncertainty in the model parameters of an optimization problem. We will formulate and
solve an optimization problem using the function fseminf, a semi-infinite programming
solver in Optimization Toolbox™.

The problem illustrated in this example involves the control of air pollution. Specifically, a
set of chimney stacks are to be built in a given geographic area. As the height of each
chimney stack increases, the ground level concentration of pollutants from the stack
decreases. However, the construction cost of each chimney stack increases with height.
We will solve a problem to minimize the cumulative height of the chimney stacks, hence
construction cost, subject to ground level pollution concentration not exceeding a
legislated limit. This problem is outlined in the following reference:

Air pollution control with semi-infinite programming, A.I.F. Vaz and E.C. Ferreira, XXVIII
Congreso Nacional de Estadistica e Investigacion Operativa, October 2004

In this example we will first solve the problem published in the above article as the
Minimal Stack Height problem. The models in this problem are dependent on several
parameters, two of which are wind speed and direction. All model parameters are
assumed to be known exactly in the first solution of the problem.

We then extend the original problem by allowing the wind speed and direction parameters
to vary within given ranges. This will allow us to analyze the effects of uncertainty in
these parameters on the optimal solution to this problem.

Minimal Stack Height Problem

Consider a 20km-by-20km region, R, in which ten chimney stacks are to be placed. These
chimney stacks release several pollutants into the atmosphere, one of which is sulfur
dioxide. The x, y locations of the stacks are fixed, but the height of the stacks can vary.

Constructors of the stacks would like to minimize the total height of the stacks, thus
minimizing construction costs. However, this is balanced by the conflicting requirement
that the concentration of sulfur dioxide at any point on the ground in the region R must
not exceed the legislated maximum.

First, let's plot the chimney stacks at their initial height. Note that we have zoomed in on
a 4km-by-4km subregion of R which contains the chimney stacks.
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he = [210;210;180;180;150;150;120;120;90;90];
plotChimneyStacks (h0, 'Chimney Stack Initial Height');

Chimney Stack Initial Height
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There are two environment related parameters in this problem, the wind speed and
direction. Later in this example we will allow these parameters to vary, but for the first
problem we will set these parameters to typical values.

% Wind direction in radians
theta® = 3.996;

% Wind speed in m/s

U = 5.64;
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Now let's plot the ground level concentration of sulfur dioxide (SO2) over the entire
region R (remember that the plot of chimney stacks was over a smaller region). The SO2
concentration has been calculated with the chimney stacks set to their initial heights.

We can see that the concentration of SO2 varies over the region of interest. There are two
features of the Sulfur Dioxide graph of note:

* SO2 concentration rises in the top left hand corner of the (x,y) plane
* SO2 concentration is approximately zero throughout most of the region

In very simple terms, the first feature is due to the prevailing wind, which is blowing SO2
toward the top left hand corner of the (x,y) plane in this example. The second factor is
due to SO2 being transported to the ground via diffusion. This is a slower process
compared to the prevailing wind and thus SO2 only reaches ground level in the top left
hand corner of the region of interest.

For a more detailed discussion of atmospheric dispersion from chimney stacks, consult
the reference cited in the introduction.

The pink plane indicates a SO2 concentration of 0-0001 25gm™" This is the legislated
maximum for which the Sulfur Dioxide concentration must not exceed in the region R. It
can be clearly seen from the graph that the SO2 concentration exceeds the maximum for
the initial chimney stack height.

Examine the MATLAB file concSulfurDioxide to see how the sulfur dioxide
concentration is calculated.

plotSulfurDioxide(h0, theta0d, UO,
'Sulfur Dioxide Concentration at Initial Stack Height');
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« 104

Sulfur Dioxide (g/m®)

Sulfur Dioxide Concentration at Initial Stack Height

y (m) 2 -1

How fseminf Works

Before we solve the minimal stack height problem, we will outline how fseminf solves a
semi-infinite problem. A general semi-infinite programming problem can be stated as:

min f{x)
such that
Ax <= b (Linear inequality constraints)

Aeq # x = beqg (Linear equality constraints)
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clx) <=0 (Nonlinear Inequality Constraints)
ceqx) =0 (Nonlinear Equality Constraints)

I <= x <= u (Bounds)

and

Kjlx,w) <=0 yhere W € 1) for J = 1. My (Nonlinear semi-infinite constraints)

This algorithm allows you to specify constraints for a nonlinear optimization problem that

must be satisfied over intervals of an auxiliary variable, ®. Note that for fseminf, this
variable is restricted to be either 1 or 2 dimensional for each semi-infinite constraint.

The function fseminf solves the general semi-infinite problem by starting from an initial

value, 0, and using an iterative procedure to obtain an optimum solution, %

The key component of the algorithm is the handling of the "semi-infinite" constraints, K;,

K must be feasible at every value of * in the interval I,

K-
1

At et it is required that the

with respect to
K;

This constraint can be simplified by considering all the local maxima of

¥ in the interval ‘IJ. The original constraint is equivalent to requiring that the value of

at each of the above local maxima is feasible.

fseminf calculates an approximation to all the local maximum values of each semi-

Ki'. To do this, fseminf first calculates each semi-infinite constraint

infinite constraint,
over a mesh of " values. A simple differencing scheme is then used to calculate all the

local maximum values of K; from the evaluated semi-infinite constraint.

As we will see later, you create this mesh in your constraint function. The spacing you

should use for each * coordinate of the mesh is supplied to your constraint function by
fseminf.

At each iteration of the algorithm, the following steps are performed:
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1
Evaluate X7 over a mesh of *-values using the current mesh spacing for each *'-

coordinate.

2
Calculate an approximation to all the local maximum values of K; using the

evaluation of Xi from step 1.
3

Replace each K; in the general semi-infinite problem with the set of local maximum

values found in steps 1-2. The problem now has a finite number of nonlinear

constraints. fseminf uses the SQP algorithm used by fmincon to take one iteration

step of the modified problem.

Check if any of the SQP algorithm's stopping criteria are met at the new point *. If
any criteria are met the algorithm terminates; if not, fseminf continues to step 5.
For example, if the first order optimality value for the problem defined in step 3 is
less than the specified tolerance then fseminf will terminate.

5 Update the mesh spacing used in the evaluation of the semi-infinite constraints in
step 1.

Writing the Nonlinear Constraint Function

Before we can call fseminf to solve the problem, we need to write a function to evaluate
the nonlinear constraints in this problem. The constraint to be implemented is that the

ground level Sulfur Dioxide concentration must not exceed 0.000125gm ™ 4t every point
in region R.

This is a semi-infinite constraint, and the implementation of the constraint function is
explained in this section. For the minimal stack height problem we have implemented the
constraint in the MATLAB file airPollutionCon.

type airPollutionCon.m

function [c, ceq, K, s] = airPollutionCon(h, s, theta, U)
%SAIRPOLLUTIONCON Constraint function for air pollution demo

[C, CEQ, K, S] = AIRPOLLUTIONCON(H, S, THETA, U) calculates the
constraints for the air pollution Optimization Toolbox (TM) demo. This
function first creates a grid of (X, Y) points using the supplied grid
spacing, S. The following constraint is then calculated over each point
of the grid:

0® 0% o° o° o° o° o° o°

Sulfur Dioxide concentration at the specified wind direction, THETA and
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wind speed U <= 1.25e-4 g/m"3

o® o° of

See also AIRPOLLUTION

o°

Copyright 2008 The MathWorks, Inc.

% Initial sampling interval

if nargin < 2 || isnan(s(1,1))
s = [1000 4000];

end

% Define the grid that the "infinite" constraints will be evaluated over
wlx = -20000:s(1,1):20000;

wly = -20000:s5(1,2):20000;

[t1l,t2] = meshgrid(wlx,wly);

% Maximum allowed sulphur dioxide
maxsul = 1.25e-4;

% Calculate the constraint over the grid

K = concSulfurDioxide(tl, t2, h, theta, U) - maxsul;
% Rescale constraint to make it 0(1)

K = 1le4*K;

% No finite constraints

c=11;

ceq = [1;

This function illustrates the general structure of a constraint function for a semi-infinite
programming problem. In particular, a constraint function for fseminf can be broken up
into three parts:

1. Define the initial mesh size for the constraint evaluation

Recall that fseminf evaluates the "semi-infinite" constraints over a mesh as part of the
overall calculation of these constraints. When your constraint function is called by
fseminf, the mesh spacing you should use is supplied to your function. Fseminf will
initially call your constraint function with the mesh spacing, s, set to NaN. This allows
you to initialize the mesh size for the constraint evaluation. Here, we have one "infinite"
constraint in two "infinite" variables. This means we need to initialize the mesh size to a
1-by-2 matrix, in this case, s = [1000 4000].

2. Define the mesh that will be used for the constraint evaluation
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A mesh that will be used for the constraint evaluation needs to be created. The three lines
of code following the comment "Define the grid that the "infinite" constraints will be
evaluated over" in airPollutionCon can be modified for most 2-d semi-infinite
programming problems.

3. Calculate the constraints over the mesh

Once the mesh has been defined, the constraints can be calculated over it. These
constraints are then returned to fseminf from the above constraint function.

Note that in this problem, we have also rescaled the constraints so that they vary on a
scale which is closer to that of the objective function. This helps fseminf to avoid scaling
issues associated with objectives and constraints which vary on disparate scales.

Solve the Optimization Problem

We can now call fseminf to solve the problem. The chimney stacks must all be at least
10m tall and we use the initial stack height specified earlier. Note that the third input
argument to fseminf below (1) indicates that there is only one semi-infinite constraint.

b = 10*ones(size(h0));
[hsopt, sumh, exitflag] = fseminf(@(h)sum(h), ho, 1, .

@(h,s) airPollutionCon(h,s,theta®,u0), [1, [1, [1, [1, lb);
Local minimum possible. Constraints satisfied.
fseminf stopped because the predicted change in the objective function
is less than the default value of the function tolerance and constraints
are satisfied to within the default value of the constraint tolerance.

fprintf('\nMinimum computed cumulative height of chimney stacks : %7.2f m\n', sumh);

Minimum computed cumulative height of chimney stacks : 3667.19 m

The minimum cumulative height computed by fseminf is considerably higher than the
initial total height of the chimney stacks. We will see how the minimum cumulative height
changes when parameter uncertainty is added to the problem later in the example. For
now, let's plot the chimney stacks at their optimal height.

Examine the MATLAB file plotChimneyStacks to see how the plot was generated.

plotChimneyStacks (hsopt, 'Chimney Stack Optimal Height');
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Chimney Stack Optimal Height
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Check the Optimization Results

Recall that fseminf determines that the semi-infinite constraint is satisfied everywhere
by ensuring that discretized maxima of the constraint are below the specified bound. We
can verify that the semi-infinite constraint is satisfied everywhere by plotting the ground
level sulfur dioxide concentration for the optimal stack height.

Note that the sulfur dioxide concentration takes its maximum possible value in the upper
left corner of the (%, y) plane, i.e. at x = -20000m, y = 20000m. This point is marked by
the blue dot in the figure below and verified by calculating the sulfur dioxide
concentration at this point.

Examine the MATLAB file plotSulfurDioxide to see how the plots was generated.
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titleStr = 'Optimal Sulfur Dioxide Concentration and its maximum (blue)';
xMaxSD = [-20000 20000];
plotSulfurDioxide(hsopt, theta®, UQ, titleStr, xMaxSD);

Optimal Sulfur Dioxide Concentration and its maximum (blue)
%104
15

=

0.5 .,

Sulfur Dioxide (g/m>)

y (m) 2 1 » 104

S02Max = concSulfurDioxide(-20000, 20000, hsopt, theta®, UO);
fprintf('Sulfur Dioxide Concentration at x = -20000m, y = 20000m : %e g/m"3\n', SO02Max

Sulfur Dioxide Concentration at x = -20000m, y = 20000m : 1.250000e-04 g/m"3

Considering Uncertainty in the Environmental Factors

The sulfur dioxide concentration depends on several environmental factors which were
held at fixed values in the above problem. Two of the environmental factors are wind
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6-160

speed and wind direction. See the reference cited in the introduction for a more detailed
discussion of all the problem parameters.

We can investigate the change in behavior for the system with respect to the wind speed
and direction. In this section of the example, we want to make sure that the sulfur dioxide
limits are satisfied even if the wind direction changes from 3.82 rad to 4.18 rad and mean
wind speed varies between 5 and 6.2 m/s.

We need to implement a semi-infinite constraint to ensure that the sulfur dioxide
concentration does not exceed the limit in region R. This constraint is required to be
feasible for all pairs of wind speed and direction.

Such a constraint will have four "infinite" variables (wind speed and direction and the x-y
coordinates of the ground). However, any semi-infinite constraint supplied to fseminf
can have no more than two "infinite" variables.

To implement this constraint in a suitable form for fseminf, we recall the SO2
concentration at the optimum stack height in the previous problem. In particular, the SO2
concentration takes its maximum possible value at x = -20000m, y = 20000m. To reduce
the number of "infinite" variables, we will assume that the SO2 concentration will also
take its maximum value at this point when uncertainty is present. We then require that

SO2 concentration at this point is below 0.000125gm™ for 11 pairs of wind speed and
direction.

This means that the "infinite" variables for this problem are wind speed and direction. To
see how this constraint has been implemented, inspect the MATLAB file
uncertainAirPollutionCon.

type uncertainAirPollutionCon.m

function [c, ceq, K, s] = uncertainAirPollutionCon(h, s)
%SUNCERTAINAIRPOLLUTIONCON Constraint function for air pollution demo

[C, CEQ, K, S] = UNCERTAINAIRPOLLUTIONCON(H, S) calculates the
constraints for the fseminf Optimization Toolbox (TM) demo. This
function first creates a grid of wind speed/direction points using the
supplied grid spacing, S. The following constraint is then calculated
over each point of the grid:

Sulfur Dioxide concentration at x = -20000m, y = 20000m <= 1.25e-4
g/m"3

0® 0% o° 0° A° o° O° o° o° o°



Analyzing the Effect of Uncertainty Using Semi-Infinite Programming

% See also AIRPOLLUTIONCON, AIRPOLLUTION
% Copyright 2008 The MathWorks, Inc.

% Maximum allowed sulphur dioxide
maxsul = 1.25e-4;

% Initial sampling interval

if nargin < 2 || isnan(s(1,1))
s = [0.02 0.04];

end

% Define the grid that the "infinite" constraints will be evaluated over
wlx = 3.82:s5(1,1):4.18; % Wind direction

wly = 5.0:5(1,2):6.2; % Wind speed

[t1l,t2] = meshgrid(wlx,wly);

% We assume the maximum S02 concentration is at [x, y] = [-20000, 20000]
% for all wind speed/direction pairs. We evaluate the S02 constraint over
% the [theta, U] grid at this point.

K = concSulfurDioxide(-20000, 20000, h, tl, t2) - maxsul;

% Rescale constraint to make it 0(1)

K = le4*K;

% No finite constraints

c=11;

ceq = [1;

This constraint function can be divided into same three sections as before:

1. Define the initial mesh size for the constraint evaluation

The code following the comment "Initial sampling interval" initializes the mesh size.
2. Define the mesh that will be used for the constraint evaluation

The next section of code creates a mesh (now in wind speed and direction) using a similar
construction to that used in the initial problem.

3. Calculate the constraints over the mesh

The remainder of the code calculates the SO2 concentration at each point of the wind
speed/direction mesh. These constraints are then returned to fseminf from the above
constraint function.
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We can now call fseminf to solve the stack height problem considering uncertainty in
the environmental factors.

[hsopt2, sumh2, exitflag2] = fseminf(@(h)sum(h), ho, 1,
@uncertainAirPollutionCon, [], [1, [1, [1, lb);

Local minimum possible. Constraints satisfied.

fseminf stopped because the predicted change in the objective function
is less than the default value of the function tolerance and constraints
are satisfied to within the default value of the constraint tolerance.

fprintf('\nMinimal computed cumulative height of chimney stacks with uncertainty: %7.2

Minimal computed cumulative height of chimney stacks with uncertainty: 3812.15 m

We can now look at the difference between the minimum computed cumulative stack
height for the problem with and without parameter uncertainty. You should be able to see
that the minimum cumulative height increases when uncertainty is added to the problem.
This expected increase in height allows the SO2 concentration to remain below the
legislated maximum for all wind speed/direction pairs in the specified range.

We can check that the sulfur dioxide concentration does not exceed the limit over the
region of interest via inspection of a sulfur dioxide plot. For a given (x, y) point, we plot
the maximum SO2 concentration for the wind speed and direction in the stated ranges.
Note that we have zoomed in on the upper left corner of the X-Y plane.

titleStr
thetaRang
URange

= 'Optimal Sulfur Dioxide Concentration under Uncertainty';
e = 3.82:0.02:4.18;
5:0.2:6.2;
XRange [-20000, -15000] ;

YRange [15000,200001;

plotSulfurDioxideUncertain(hsopt2, thetaRange, URange, XRange, YRange, titleStr);
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Optimal Sulfur Dioxide Concentration under Uncertainty
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We finally plot the chimney stacks at their optimal height when there is uncertainty in the
problem definition.

plotChimneyStacks (hsopt2, 'Chimney Stack Optimal Height under Uncertainty');
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Chimney Stack Optimal Height under Uncertainty
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There are many options available for the semi-infinite programming algorithm, fseminf.
Consult the Optimization Toolbox™ User's Guide for details, in the Using Optimization
Toolbox Solvers chapter, under Constrained Nonlinear Optimization: fseminf Problem
Formulation and Algorithm.

See Also

More About

. “One-Dimensional Semi-Infinite Constraints” on page 6-143
. “Two-Dimensional Semi-Infinite Constraint” on page 6-147
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Multiobjective Optimization Algorithms

7-2

In this section...

“Multiobjective Optimization Definition” on page 7-2

“Algorithms” on page 7-3

Multiobjective Optimization Definition

There are two Optimization Toolbox multiobjective solvers: fgoalattain and fminimax.

fgoalattain addresses the problem of reducing a set of nonlinear functions F;(x)
below a set of goals F*;. Since there are several functions Fj(x), it is not always clear
what it means to solve this problem, especially when you cannot achieve all the goals
simultaneously. Therefore, the problem is reformulated to one that is always well-
defined.

The unscaled goal attainment problem is to minimize the maximum of F;(x) - F*,.

There is a useful generalization of the unscaled problem. Given a set of positive
weights w;, the goal attainment problem tries to find x to minimize the maximum of

F(x)-F
Wi (7-1)

This minimization is supposed to be accomplished while satisfying all types of
constraints: c(x) = 0, ceq(x) = 0, A-x < b, Aeq'x = beq, and | = x =< u.

If you set all weights equal to 1 (or any other positive constant), the goal attainment
problem is the same as the unscaled goal attainment problem. If the F*; are positive,
and you set all weights as w; = F*,, the goal attainment problem becomes minimizing
the relative difference between the functions F;(x) and the goals F*,.

In other words, the goal attainment problem is to minimize a slack variable y, defined
as the maximum over i of the expressions in “Equation 7-1”. This implies the
expression that is the formal statement of the goal attainment problem:

min y
x,Y
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such that F(x) - w-y = F*, ¢(x) = 0, ceq(x) =0, A-x = b, Aeq'x = beq, and | < x < u.

+ fminimax addresses the problem of minimizing the maximum of a set of nonlinear
functions, subject to all types of constraints:

minmax F;(x)
X 14

such that c(x) = 0, ceq(x) = 0, Ax < b, Aeq’x = beq, and | = x =< u.

Clearly, this problem is a special case of the unscaled goal attainment problem, with
F*i=0andWi= 1

Algorithms
Goal Attainment Method

This section describes the goal attainment method of Gembicki [16]. This method uses a

set of design goals, F~ = {F, ,F, ,...,F,;}, associated with a set of objectives, F(x) =
{F(x),F5(x),....Fn(x)}. The problem formulation allows the objectives to be under- or
overachieved, enabling the designer to be relatively imprecise about the initial design
goals. The relative degree of under- or overachievement of the goals is controlled by a
vector of weighting coefficients, w = {w;,w,,...,w,,}, and is expressed as a standard

optimization problem using the formulation

minimizey
YeR, xeQ (7-2)

such that F(x)—w;y < F, , i=1,..,m.

The term w;p introduces an element of slackness into the problem, which otherwise
imposes that the goals be rigidly met. The weighting vector, w, enables the designer to
express a measure of the relative tradeoffs between the objectives. For instance, setting
the weighting vector w equal to the initial goals indicates that the same percentage
under- or overachievement of the goals, F*, is achieved. You can incorporate hard
constraints into the design by setting a particular weighting factor to zero (i.e., w; = 0).
The goal attainment method provides a convenient intuitive interpretation of the design
problem, which is solvable using standard optimization procedures. Illustrative examples
of the use of the goal attainment method in control system design can be found in
Fleming ([10] and [11]).
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The goal attainment method is represented geometrically in the figure below in two
dimensions.

o w " ' i - 1
r_jETJéuﬁ.e*,r subject to Fi(x)-w y=F]

¥

Foix)—wyy=Fy

Figure 7-1, Geometrical Representation of the Goal Attainment Method

Specification of the goals, Ff F; , defines the goal point, P. The weighting vector
defines the direction of search from P to the feasible function space, A(y). During the
optimization y is varied, which changes the size of the feasible region. The constraint
boundaries converge to the unique solution point F,, Fy,.

Algorithm Improvements for the Goal Attainment Method

The goal attainment method has the advantage that it can be posed as a nonlinear
programming problem. Characteristics of the problem can also be exploited in a nonlinear
programming algorithm. In sequential quadratic programming (SQP), the choice of merit
function for the line search is not easy because, in many cases, it is difficult to “define”
the relative importance between improving the objective function and reducing constraint
violations. This has resulted in a number of different schemes for constructing the merit
function (see, for example, Schittkowski [36]). In goal attainment programming there
might be a more appropriate merit function, which you can achieve by posing

“Equation 7-2” as the minimax problem

minimize max{A;},
R (7-3)
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where

Ed
mzﬂ@iﬂyﬁme
w .

l

Following the argument of Brayton et al. [2] for minimax optimization using SQP, using
the merit function of “Equation 6-46” for the goal attainment problem of “Equation 7-3”
gives

v(x,y)= y+2ri -max{O,Fi(x) —w;y - Fl*}
i=1 (7-4)

When the merit function of “Equation 7-4” is used as the basis of a line search procedure,
then, although w(x,y) might decrease for a step in a given search direction, the function
max A; might paradoxically increase. This is accepting a degradation in the worst case
objective. Since the worst case objective is responsible for the value of the objective
function yp, this is accepting a step that ultimately increases the objective function to be
minimized. Conversely, w(x,p) might increase when max A; decreases, implying a rejection
of a step that improves the worst case objective.

Following the lines of Brayton et al. [2], a solution is therefore to set w(x) equal to the
worst case objective, i.e.,

v (x) = maxA;.
i (7-5)

A problem in the goal attainment method is that it is common to use a weighting
coefficient equal to 0 to incorporate hard constraints. The merit function of
“Equation 7-5” then becomes infinite for arbitrary violations of the constraints.

To overcome this problem while still retaining the features of “Equation 7-5”, the merit
function is combined with that of “Equation 6-47", giving the following:

m ri-max{O,F}(x)—wi}/—F}*} ifw; =0

y@ =3 . .
5 |maxA;, i=1,.,m otherwise.
l

(7-6)

Another feature that can be exploited in SQP is the objective function y. From the KKT
equations it can be shown that the approximation to the Hessian of the Lagrangian, H,
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should have zeros in the rows and columns associated with the variable y. However, this
property does not appear if H is initialized as the identity matrix. H is therefore initialized
and maintained to have zeros in the rows and columns associated with y.

These changes make the Hessian, H, indefinite. Therefore H is set to have zeros in the
rows and columns associated with p, except for the diagonal element, which is set to a
small positive number (e.g., 1e-10). This allows use of the fast converging positive
definite QP method described in “Quadratic Programming Solution” on page 6-31.

The preceding modifications have been implemented in fgoalattain and have been
found to make the method more robust. However, because of the rapid convergence of
the SQP method, the requirement that the merit function strictly decrease sometimes
requires more function evaluations than an implementation of SQP using the merit
function of “Equation 6-46".

Minimizing the Maximum Objective

fminimax uses a goal attainment method. It takes goals of 0, and weights of 1. With this
formulation, the goal attainment problem becomes

= min max f; (x),

l X l X

min max -
3 weight,

f:(x) - goal; ]

which is the minimax problem.

Parenthetically, you might expect fminimax to turn the multiobjective function into a
single objective. The function

fix) = max(F; (x),...Fj(x))

is a single objective function to minimize. However, it is not differentiable, and
Optimization Toolbox objectives are required to be smooth. Therefore the minimax
problem is formulated as a smooth goal attainment problem.
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Using fminimax with a Simulink Model

Another approach to optimizing the control parameters in the Simulink model shown in
“Plant with Actuator Saturation” on page 11-22 is to use the fminimax function. In this
case, rather than minimizing the error between the output and the input signal, you
minimize the maximum value of the output at any time t between 0 and 100.

The code for this example, shown below, is contained in the function runtrackmm, in
which the objective function is simply the output yout returned by the sim command. But
minimizing the maximum output at all time steps might force the output to be far below
unity for some time steps. To keep the output above 0.95 after the first 20 seconds, the
constraint function trackmmcon contains the constraint yout >= 0.95 from t=20 to
t=100. Because constraints must be in the form g = 0, the constraint in the function is

g = -yout(20:100)+.95.

Both trackmmobj and trackmmcon use the result yout from sim, calculated from the
current PID values. To avoid calling the simulation twice, runtrackmm has nested
functions so that the value of yout is shared between the objective and constraint
functions. The simulation is called only when the current point changes.

The following is the code for runtrackmm:
function [Kp, Ki, Kd] = runtrackmm
optsim % initialize Simulink(R)

pid0 = [0.63 0.0504 1.9688];
% al, a2, yout are shared with TRACKMMOBJ and TRACKMMCON

al = 3; a2 = 43; % Initialize plant variables in model
yout = []; % Give yout an initial value
pold = []; % tracks last pid

opt = simset('solver','ode5', 'SrcWorkspace', 'Current');
options = optimset('Display', 'iter’',...
'TolX',0.001, 'TolFun',0.001);
pid = fminimax(@trackmmobj,pido,[1,[1,[1,[1,[1,I1,...
@trackmmcon,options);
Kp = pid(1); Ki = pid(2); Kd = pid(3);

function F = trackmmobj(pid)
% Track the output of optsim to a signal of 1.
% Variables al and a2 are shared with RUNTRACKMM.
% Variable yout is shared with RUNTRACKMM and
% RUNTRACKMMCON.
updateIfNeeded(pid)
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F = yout;
end

function [c,ceq] = trackmmcon(pid)
% Track the output of optsim to a signal of 1.
% Variable yout is shared with RUNTRACKMM and
% TRACKMMOBJ
updateIfNeeded(pid)

c = -yout(20:100)+.95;
ceq=[1;
end

function updateIfNeeded(pid)
if ~isequal(pid,pold) % compute only if needed

Kp = pid(1);
Ki = pid(2);
Kd = pid(3);

[~,~,yout] = sim('optsim',[0 100],opt);
pold = pid;

end
end

end

Copy the code for runtrackmm to a file named runtrackmm.m, placed in a folder on your
MATLAB path.

When you run the code, it returns the following results:

[Kp,Ki,Kd] = runtrackmm
Done initializing optsim.

Objective Max Line search Directional
Iter F-count value constraint steplength derivative  Procedure
0 5 0 1.11982
1 11 1.184 0.07978 1 0.482
2 17 1.012 0.04285 1 -0.236
3 23 0.9996 0.00397 1 -0.0195 Hessian modified twice
4 29 0.9996 3.464e-05 1 0.000687 Hessian modified
5 35 0.9996 2.273e-09 1 -0.0175 Hessian modified twice

Local minimum possible. Constraints satisfied.

fminimax stopped because the predicted change in the objective function
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is less than the selected value of the function tolerance and constraints
are satisfied to within the default value of the constraint tolerance.

Kp =
0.5910

Ki =
0.0606

Kd =
5.5383

The last value in the Objective value column of the output shows that the maximum
value for all the time steps is 0.9997. The closed loop response with this result is shown
in the figure “Closed-Loop Response Using fminimax” on page 7-9.

This solution differs from the solution obtained in “Isqnonlin with a Simulink Model” on
page 11-22 because you are solving different problem formulations.
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Closed-Loop Response Using fminimax
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Signal Processing Using fgoalattain

7-10

Consider designing a linear-phase Finite Impulse Response (FIR) filter. The problem is to
design a lowpass filter with magnitude one at all frequencies between 0 and 0.1 Hz and
magnitude zero between 0.15 and 0.5 Hz.

The frequency response H(f) for such a filter is defined by

2M )
H(f)="Y h(n)e™/>""
n=0
— A(f)e_j2nfM,
M-1
A(f) =Y aln)cos(2nfn),
n=0 (7-7)

where A(f) is the magnitude of the frequency response. One solution is to apply a goal
attainment method to the magnitude of the frequency response. Given a function that
computes the magnitude, fgoalattain will attempt to vary the magnitude coefficients
a(n) until the magnitude response matches the desired response within some tolerance.
The function that computes the magnitude response is given in filtmin.m. This function
uses a, the magnitude function coefficients, and w, the discretization of the frequency
domain of interest.

To set up a goal attainment problem, you must specify the goal and weights for the
problem. For frequencies between 0 and 0.1, the goal is one. For frequencies between
0.15 and 0.5, the goal is zero. Frequencies between 0.1 and 0.15 are not specified, so no
goals or weights are needed in this range.

This information is stored in the variable goal passed to fgoalattain. The length of
goal is the same as the length returned by the function filtmin. So that the goals are
equally satisfied, usually weight would be set to abs (goal). However, since some of the
goals are zero, the effect of using weight=abs (goal) will force the objectives with
weight 0 to be satisfied as hard constraints, and the objectives with weight 1 possibly to
be underattained (see “Goal Attainment Method” on page 7-3). Because all the goals are
close in magnitude, using a weight of unity for all goals will give them equal priority.
(Using abs (goal) for the weights is more important when the magnitude of goal differs
more significantly.) Also, setting

options = optimoptions('fgoalattain', 'EqualityGoalCount',length(goal));
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specifies that each objective should be as near as possible to its goal value (neither
greater nor less than).

Step 1: Write a file filtmin.m

function y = filtmin(a,w)
n = length(a);
y = cos(w'*(0:n-1)*2*pi)*a ;

Step 2: Invoke optimization routine

% Plot with initial coefficients
0 = ones(15,1);

ncr = 50;

= linspace(0,0.5,incr);

y0 = filtmin(a®,w);
clf, plot(w,y0,'-.b");
drawnow;

% Set up the goal attainment problem

wl = linspace(0,0.1,incr) ;
w2 = linspace(0.15,0.5,1incr);
wl = [wl w2];

goal = [1.0*ones(1l,length(wl)) zeros(1l,length(w2))];
weight = ones(size(goal));

% Call fgoalattain

options = optimoptions('fgoalattain', 'EqualityGoalCount',length(goal));

[a,fval,attainfactor,exitflagl=fgoalattain(@(x)filtmin(x,w0), ...
a0,goal,weight, [1,[1,[1,[1,[1,[1,[],0options);

% Plot with the optimized (final) coefficients
y = filtmin(a,w);

hold on, plot(w,y,'r")

axis([0 0.5 -3 31])

xlabel('Frequency (Hz)"')

ylabel('Magnitude Response (dB)"')
legend('initial', 'final')

grid on

Compare the magnitude response computed with the initial coefficients and the final
coefficients (“Magnitude Response with Initial and Final Magnitude Coefficients” on page
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7-12). Note that you could use the firpm function in Signal Processing Toolbox™
software to design this filter.
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See Also

More About

. “Multi-Objective Goal Attainment Optimization” on page 7-17
. “Minimax Optimization” on page 7-25
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Generate and Plot a Pareto Front

This example shows how to generate and plot a Pareto front for a 2-D multiobjective
function using fgoalattain.

The two objectives in this example are shifted and scaled versions of the convex function
1+42 .
function f = simple mult(x)

f(:,1)
f(:,2)

sqrt(1+x.”2);
4 + 2¥sqrt(1+(x-1).72);

Both components are increasing as x decreases below 0 or increases above 1. In between
0 and 1, fi(x) is increasing and f5(x) is decreasing, so there is a tradeoff region.

t = linspace(-0.5,1.5);
F = 51mple mult(t);
plot(t,F, 'LineWidth',2)
hold on
plot([0,0],[0,8],'g--");
plot([1,1],[0,8],'g--");
plot([0,1],[1,6], 'k.", 'MarkerSize',15);
text(-0.25,1.5, Mlnlmum( 1(x))")

text(.75,5.5, Mlnlmum(fﬁZ( x))")

hold off

legend('f 1(x)"','f 2(x)")

xlabel({'x"'; 'Tradeoff region between the green lines'})
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Minimum(f, (x))

f (x}
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Tradeoff region between the green lines

To find the Pareto front, first find the unconstrained minima of the two functions. In this
case, you can see by inspection that the minimum of f;(x) is 1, and the minimum of f;(x) is
6, but in general you might need to use an optimization routine.

In general, write a function that returns a particular component of the multiobjective

function.

function z = pickindex(x,k)
simple mult(x); % evaluate both objectives
z(k); % return objective k

z
z

Then find the minimum of each component using an optimization solver. You can use
fminbnd in this case, or fminunc for higher-dimensional problems.
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k =1;
[minl,minfnl] = fminbnd(@(x)pickindex(x,k),-1,2);
k = 2;

[min2,minfn2] = fminbnd(@(x)pickindex(x,k),-1,2);

Set goals that are the unconstrained optima for each component. You can simultaneously
achieve these goals only if the multiobjective functions do not interfere with each other,
meaning there is no tradeoff.

goal = [minfnl,minfn2];

To calculate the Pareto front, take weight vectors [a,1-a] for a from 0 through 1. Solve the
goal attainment problem, setting the weights to the various values.

nf = 2; % number of objective functions
N = 50; % number of points for plotting
onen = 1/N;

X = zeros(N+1,1);

f = zeros(N+1,nf);

fun = @simple mult;

x0 = 0.5;
options = optimoptions('fgoalattain', 'Display', 'off');
for r = 0:N

t = onen*r; % 0 through 1

weight = [t,1-t];

[x(r+l,:),f(r+l,:)] = fgoalattain(fun,x0,goal,weight, ...
[(1,01,01,01,01,[1,[1,0ptions);

end

figure

plot(f(:,1)
xlabel('f 1
ylabel('f 2

(:,2),'k.");

’
1
1

f
)
)
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You can see the tradeoff between the two objectives.

See Also

More About
. “Multi-Objective Goal Attainment Optimization” on page 7-17
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Multi-Objective Goal Attainment Optimization

This example shows how to solve a pole-placement problem using the multiobjective goal
attainment method. This algorithm is implemented in the function fgoalattain.

Equation that Describes Evolution of System

Consider a 2-input 2-output unstable plant. The equation describing the evolution of the
system x(t) is

elx e .
=2 = Axit) + Bulr),
di !

where u(t) is the input (control) signal. The output of the system is
i) = Cxii).

The matrices A, B, and C are

A= [ -0.5 06 0; 06 -2 10; 0 1 -21;

B= [1 0; -2 2; 0 11;

C=[1 0 0; 0 0 1T1;

Optimization Objective

Suppose that the control signal u(t) is set as proportional to the output y(t):
wit) = Kyli)

for some matrix K.

This means that the evolution of the system x(t) is:

% = Ax(1) + BKCxit) = (A + BKC xi1).

[/

The object of the optimization is to design K to have the following two properties:
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1. The real parts of the eigenvalues of (A + B*K*C) are smaller than [-5, -3, -1]. (This is
called pole placement in the control literature.)

2. abs(K) <= 4 (each element of K is between -4 and 4)
In order to solve the optimization, first set the multiobjective goals:
goa-l- = ['51 '31 '1]r

Set the weights equal to the goals to ensure same percentage under- or over-attainment
in the goals.

weight = abs(goal);
Initialize the output feedback controller
KO = -1 -1; -1 -11;

Set upper and lower bounds on the controller

b = repmat(-4,size(K0))
b = 2x2

-4 -4

-4 -4
ub = repmat(4,size(K0))
ub = 2x2

4 4

4 4

Set optimization display parameter to give output at each iteration:
options = optimoptions('fgoalattain', 'Display', 'iter');

Create a vector-valued function eigfun that returns the eigenvalues of the closed loop
system. This function requires additional parameters (namely, the matrices A, B, and C);
the most convenient way to pass these is through an anonymous function:

eigfun = @(K) sort(eig(A+B*K*C));
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Call Optimization Solver

To begin the optimization we call FGOALATTAIN:

[K,~,attainfactor] =

fgoalattain(eigfun,K0,goal,weight,[1,[1,[1,[1,lb,ub,[],options);

Attainment

Iter F-count factor
0 6 0
1 13 1.031
2 20 0.3525
3 27 -0.1706
4 34 -0.2236
5 41 -0.3568
6 48 -0.3645
7 55 -0.3645
8 62 -0.3675
9 69 -0.3889
10 76 -0.3862
11 83 -0.3863

Max
constraint
1.88521
0.02998
0.06863
0.1071
0.06654
0.007894
0.000145
0
0.0001549
0.008327
0
4.76e-13

Line search
steplength

O

Local minimum possible. Constraints satisfied.

Directional
derivative

0.745
-0.613
-0.223
-0.234

-0.0812
-0.164
-0.00515
-0.00812
-0.0075
0.00568
-0.998

Procedure

Hessian
Hessian

Hessian
Hessian
Hessian
Hessian

Hessian

fgoalattain stopped because the size of the current search direction is less than
twice the default value of the step size tolerance and constraints are
satisfied to within the default value of the constraint tolerance.

The value of the control parameters at the solution is:

K
K= 2x2

-4.0000 -0.2564
-4.0000 -4.0000

The eigenvalues of the closed loop system are in eigfun(K) as follows: (they are also held

in output fval)
eigfun(K)

ans = 3x1
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-6.9313
-4.1588
-1.4099

The attainment factor indicates the level of goal achievement. A negative attainment
factor indicates over-achievement, positive indicates under-achievement. The value
attainfactor we obtained in this run indicates that the objectives have been over-achieved
by almost 40 percent:

attainfactor
attainfactor = -0.3863

Evolution of System Via Solution to ODE

Here is how the system x(t) evolves from time 0 to time 4, using the calculated feedback
matrix K, starting from the point x(0) = [1;1;1].

First solve the differential equation:

[Times, xvals] = ode45(@(u,x)((A + B*K*C)*x),[0,4]1,[1;1;1]);
Then plot the result:

plot(Times, xvals)

legend('x 1(t)"','x 2(t)','x 3(t)', 'Location', 'best")

xlabel('t');
ylabel('x(t)");
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Set Goals To Be Achieved Exactly

Suppose we now require the eigenvalues to be as near as possible to the goal values, [-5,
-3, -1]. Set options.GoalsExactAchieve to the number of objectives that should be as near

as possible to the goals (i.e., do not try to over-achieve):

All three objectives should be as near as possible to the goals.

options.GoalsExactAchieve

Call Optimization Solver

We are ready to call the optimization solver:
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[K,fval,attainfactor,exitflag,output,lambdal = ...
fgoalattain(eigfun,K0,goal,weight,[1,[1,[1,[1,lb,ub,[],options);

Attainment Max Line search Directional
Iter F-count factor constraint steplength derivative Procedure

0 6 0 1.88521
1 13 1.031 0.02998 1 0.745
2 20 0.3525 0.06863 1 -0.613
3 27 0.1528 -0.009105 1 -0.22 Hessian modi
4 34 0.02684 0.03722 1 -0.166 Hessian modi-
5 41 1.388e-17 0.005702 1 -0.116 Hessian modi-
6 48 -5.907e-19 9.707e-06 1 -1.25e-15 Hessian modi
7 55 1.891e-21 4.82e-11 1 3.1e-14 Hessian modi

Local minimum possible. Constraints satisfied.

fgoalattain stopped because the size of the current search direction is less than
twice the default value of the step size tolerance and constraints are
satisfied to within the default value of the constraint tolerance.

The value of the control parameters at this solution is:
K
K = 2x2

-1.5954 1.2040
-0.4201 -2.9046

This time the eigenvalues of the closed loop system, which are also held in output fval,
are as follows:

eigfun(K)
ans = 3x1
-5.0000

-3.0000
-1.0000

The attainment factor is the level of goal achievement. A negative attainment factor
indicates over-achievement, positive indicates under-achievement. The low attainfactor
obtained indicates that the eigenvalues have almost exactly met the goals:
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attainfactor
attainfactor = 1.8913e-21

Evolution of New System Via Solution to ODE

Here is how the system x(t) evolves from time 0 to time 4, using the new calculated
feedback matrix K, starting from the point x(0) = [1;1;1].

First solve the differential equation:

[Times, xvals] = oded45(@(u,x)((A + B*K*C)*x),[0,4]1,[1;1;1]1);
Then plot the result:

plot(Times, xvals)

legend('x 1(t)"','x 2(t)"','x 3(t)"', 'Location', 'best")

xlabel('t');
ylabel('x(t)");
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See Also
More About

. “Isqnonlin with a Simulink Model” on page 11-22
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Minimax Optimization

This example shows how to solve a nonlinear filter design problem using a minimax
optimization algorithm, fminimax, in Optimization Toolbox™. Note that to run this
example you must have the Signal Processing Toolbox™ installed.

Set Finite Precision Parameters

Consider an example for the design of finite precision filters. For this, you need to specify
not only the filter design parameters such as the cut-off frequency and number of
coefficients, but also how many bits are available since the design is in finite precision.

8 .

nbits How many bits have we to realize filter

maxbin = 2”nbits-1; % Maximum number expressable in nbits bits

n = 4; % Number of coefficients (order of filter plus 1)
Wn =0.2; % Cutoff frequency for filter

Rp =1.5; % Decibels of ripple in the passband

w = 128; % Number of frequency points to take

Continuous Design First

This is a continuous filter design; we use cheby1l, but we could also use ellip,
yulewalk or remez here:

[bl,al] = chebyl(n-1,Rp,Wn);

[h,w] = freqz(bl,al,w);
h = abs(h);
plot(w, h)
title('Frequency response using non-integer variables')

Frequency response
Magnitude response

)
“©
)

“©
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Frequency response using non-integer variables
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x = [bl,all; % The design variables

Set Bounds for Filter Coefficients

We now set bounds on the maximum and minimum values:

if (any(x < 0))

If there are negative coefficients - must save room to use a sign bit
and therefore reduce maxbin

maxbin = floor(maxbin/2);

vlb = -maxbin * ones(1l, 2*n)-1;

vub = maxbin * ones(1l, 2*n);

else

[)

% otherwise, all positive

o o°
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vlb
vub

zeros(1,2*n);
maxbin * ones(1l, 2*n);

end
Scale Coefficients

Set the biggest value equal to maxbin and scale other filter coefficients appropriately.

[m, mix] = max(abs(x));

factor = maxbin/m;
x = factor * x; % Rescale other filter coefficients
xorig = x;

xmask = 1:2%*n;

Remove the biggest value and the element that controls D.C. Gain
from the list of values that can be changed.

xmask(mix) = [];

nx = 2*n;

)
“©
)

“©

Set Optimization Criteria

Using optimoptions, adjust the termination criteria to reasonably high values to
promote short running times. Also turn on the display of results at each iteration:

options = optimoptions('fminimax',
'StepTolerance', 0.1, ..
'OptimalityTolerance', le-4,...
'ConstraintTolerance', le-6,
'‘Display', ‘'iter');

Minimize the Absolute Maximum Values

We need to minimize absolute maximum values, so we set options.MinAbsMax to the
number of frequency points:

if length(w) ==
options = optimoptions(options, 'AbsoluteMaxObjectiveCount',w);
else
options = optimoptions(options, 'AbsoluteMaxObjectiveCount',length(w));
end
Eliminate First Value for Optimization
Discretize and eliminate first value and perform optimization by calling FMINIMAX:

[x, xmask] = elimone(x, xmask, h, w, n, maxbin)
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X = 1x8

0.5441 1.6323 1.6323 0.5441 57.1653 -127.0000 108.0000 -33.8267

xmask = 1Ix6

1 2 3 4 5 8

niters = length(xmask);
disp(sprintf('Performing %g stages of optimization.\n\n', niters));

Performing 6 stages of optimization.

for m = l:niters
fun = @(xfree)filtobj (xfree,x,xmask,n,h,maxbin); % objective
confun = @(xfree)filtcon(xfree,x,xmask,n,h,maxbin); % nonlinear constraint
disp(sprintf('Stage: %g \n', m));
x(xmask) = fminimax(fun,x(xmask),[1,[]1,[]1,[]1,vlb(xmask),vub(xmask), ...
confun,options);
[x, xmask] = elimone(x, xmask, h, w, n, maxbin);

end
Stage: 1
Objective Max Line search Directional
Iter F-count value constraint steplength derivative Procedure
0 8 0 0.00329174
1 17 0.0001845 3.34e-07 1 0.0143

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the selected value of the step size tolerance and constraints are
satisfied to within the selected value of the constraint tolerance.

Stage: 2

Objective Max Line search Directional
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Iter F-count value constraint steplength derivative Procedure
0 7 0 0.0414182
1 15 0.01649 0.0002558 1 0.261
2 23 0.01544 6.124e-07 1 -0.0282 Hessian modi

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the selected value of the step size tolerance and constraints are
satisfied to within the selected value of the constraint tolerance.

Stage: 3
Objective Max Line search Directional
Iter F-count value constraint steplength derivative Procedure
0 6 0 0.0716961
1 13 0.05943 3.143e-10 1 0.776

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the selected value of the step size tolerance and constraints are
satisfied to within the selected value of the constraint tolerance.

Stage: 4
Objective Max Line search Directional
Iter F-count value constraint steplength derivative Procedure
0 5 0 0.129938
1 11 0.04278 7.922e-11 1 0.183

Local minimum possible. Constraints satisfied.
fminimax stopped because the size of the current search direction is less than

twice the selected value of the step size tolerance and constraints are
satisfied to within the selected value of the constraint tolerance.
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Stage: 5
Objective Max Line search Directional
Iter F-count value constraint steplength derivative Procedure
0 4 0 0.0901749
1 9 0.03867 -2.598e-11 1 0.256

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the selected value of the step size tolerance and constraints are
satisfied to within the selected value of the constraint tolerance.

Stage: 6
Objective Max Line search Directional
Iter F-count value constraint steplength derivative Procedure
0 3 0 0.11283
1 7 0.05033 -1.249e-16 1 0.197

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the selected value of the step size tolerance and constraints are
satisfied to within the selected value of the constraint tolerance.

Check Nearest Integer Values

See if nearby values produce a for better filter.

xold = x;
xmask = 1:2*n;
xmask([n+1l, mix]) = [];
X =X+ 0.5;
for i = xmask
[x, xmask] = elimone(x, xmask, h, w, n, maxbin);
end
xmask = 1:2*n;
xmask([n+1, mix]) = [1;
X =x - 0.5;
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for i = xmask

[x, xmask] = elimone(x, xmask, h, w, n, maxbin);

end

if any(abs(x) > maxbin)
x = xold;

end

Frequency Response Comparisons

We first plot the frequency response of the filter and we compare it to a filter where the

coefficients are just rounded up or down:

subplot(211)

bo = x(1:n);

ao = x(n+1:2*n);

h2 = abs(freqz(bo,ao0,128));

plot(w,h,w,h2,'0")
title('Optimized filter versus original')

xround = round(xorig)

xround = Ix8

1 2 2 1 57 -127 108
b = xround(1l:n);
a = xround(n+1l:2*n);

h3 = abs(freqz(b,a,128));

subplot(212)

plot(w,h,w,h3,'+")

title('Rounded filter versus original')

-34
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Optimized filter versus original
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Rounded filter versus original
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fig = gcf;

fig.NextPlot = 'replace’;

See Also

More About
. “Isqnonlin with a Simulink Model” on page 11-22

7-32



Linear Programming and Mixed-
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* “Linear Programming Algorithms” on page 8-2
* “Typical Linear Programming Problem” on page 8-17

* “Maximize Long-Term Investments Using Linear Programming: Solver-Based”
on page 8-19

* “Mixed-Integer Linear Programming Algorithms” on page 8-34

* “Tuning Integer Linear Programming” on page 8-45

* “Mixed-Integer Linear Programming Basics: Solver-Based” on page 8-48
» “Factory, Warehouse, Sales Allocation Model: Solver-Based” on page 8-52
* “Traveling Salesman Problem: Solver-Based” on page 8-65

* “Optimal Dispatch of Power Generators: Solver-Based” on page 8-74

* “Mixed-Integer Quadratic Programming Portfolio Optimization: Solver-Based”
on page 8-87

» “Solve Sudoku Puzzles Via Integer Programming: Solver-Based” on page 8-97

+ “Office Assignments by Binary Integer Programming: Solver-Based” on page 8-106

* “Cutting Stock Problem: Solver-Based” on page 8-115

* “Factory, Warehouse, Sales Allocation Model: Problem-Based” on page 8-121

* “Traveling Salesman Problem: Problem-Based” on page 8-132

* “Optimal Dispatch of Power Generators: Problem-Based” on page 8-141

» “Office Assignments by Binary Integer Programming: Problem-Based” on page 8-152

» “Mixed-Integer Quadratic Programming Portfolio Optimization: Problem-Based”
on page 8-159

* “Cutting Stock Problem: Problem-Based” on page 8-168
* “Solve Sudoku Puzzles Via Integer Programming: Problem-Based” on page 8-174
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Linear Programming Algorithms

8-2

In this section...

“Linear Programming Definition” on page 8-2
“Interior-Point linprog Algorithm” on page 8-2
“Interior-Point-Legacy Linear Programming” on page 8-8

“Dual-Simplex Algorithm” on page 8-12

Linear Programming Definition

Linear programming is the problem of finding a vector x that minimizes a linear function
fTx subject to linear constraints:

min f Ty
X

such that one or more of the following hold:

A-x
Aeq-x
[ = X

A
o

beq

IA
=

Interior-Point linprog Algorithm

The linprog 'interior-point' algorithm is very similar to the “interior-point-convex
quadprog Algorithm” on page 10-2. It also shares many features with the Linprog
"interior-point-legacy' algorithm. These algorithms have the same general
outline:

1 Presolve, meaning simplification and conversion of the problem to a standard form.

2 Generate an initial point. The choice of an initial point is especially important for
solving interior-point algorithms efficiently, and this step can be time-consuming.

3  Predictor-corrector iterations to solve the KKT equations. This step is generally the
most time-consuming.



Linear Programming Algorithms

Presolve

The algorithm begins by attempting to simplify the problem by removing redundancies
and simplifying constraints. The tasks performed during the presolve step include:

* Check if any variables have equal upper and lower bounds. If so, check for feasibility,
and then fix and remove the variables.

* Check if any linear inequality constraint involves just one variable. If so, check for
feasibility, and change the linear constraint to a bound.

* Check if any linear equality constraint involves just one variable. If so, check for
feasibility, and then fix and remove the variable.

* Check if any linear constraint matrix has zero rows. If so, check for feasibility, and
delete the rows.

¢ Check if the bounds and linear constraints are consistent.

* Check if any variables appear only as linear terms in the objective function and do not
appear in any linear constraint. If so, check for feasibility and boundedness, and fix
the variables at their appropriate bounds.

* Change any linear inequality constraints to linear equality constraints by adding slack
variables.

If algorithm detects an infeasible or unbounded problem, it halts and issues an
appropriate exit message.

The algorithm might arrive at a single feasible point, which represents the solution.
If the algorithm does not detect an infeasible or unbounded problem in the presolve step,
it continues, if necessary, with the other steps. At the end, the algorithm reconstructs the

original problem, undoing any presolve transformations. This final step is the postsolve
step.

For simplicity, if the problem is not solved in the presolve step, the algorithm shifts all
finite lower bounds to zero.

Generate Initial Point

To set the initial point, x0, the algorithm does the following.

1 [Initialize x0 to ones(n, 1), where n is the number of elements of the objective
function vector f.
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2 Convert all bounded components to have a lower bound of 0. If component i has a
finite upper bound u(i), then x0(i) = u/2.

3  For components that have only one bound, modify the component if necessary to lie
strictly inside the bound.

4 To put x0 close to the central path, take one predictor-corrector step, and then
modify the resulting position and slack variables to lie well within any bounds. For
details of the central path, see Nocedal and Wright [7], page 397.

Predictor-Corrector

Similar to the fmincon interior-point algorithm on page 6-37, the interior-point-
convex algorithm tries to find a point where the Karush-Kuhn-Tucker (KKT) on page 3-12
conditions hold. To describe these equations for the linear programming problem,
consider the standard form of the linear programming problem after preprocessing:

Ax=b
min fo subject to yx+t=u
* x,t > 0.

* Assume for now that all variables have at least one finite bound. By shifting and
negating components, if necessary, this assumption means that all x components have
a lower bound of 0.

A is the extended linear matrix that includes both linear inequalities and linear

equalities. & is the corresponding linear equality vector. A also includes terms for
extending the vector x with slack variables s that turn inequality constraints to
equality constraints:

o[ A O 0
A I)s /|
where x, means the original x vector.
* tis the vector of slacks that convert upper bounds to equalities.

The Lagrangian for this system involves the following vectors:

* y, Lagrange multipliers associated with the linear equalities
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* v, Lagrange multipliers associated with the lower bound (positivity constraint)
* w, Lagrange multipliers associated with the upper bound

The Lagrangian is
L= fo—yT (Ax-8)-vlx—wl (u-x-1t).
Therefore, the KKT conditions for this system are

f—ATy—v+w:0

Ax=b
x+t=u
v;x; =0
w,-t,-=0

(x,v,w,t) =2 0.

The algorithm first predicts a step from the Newton-Raphson formula, and then computes
a corrector step. The corrector attempts to reduce the residual in the nonlinear
complementarity equations s;z; = 0. The Newton-Raphson step is

o -AT o0 -1 1\ f-Aly—v+w Td
A 0 0 0 04 Ax-b Tp
-I 0 -I 0 O] At |=- u—-x—t =—|rw b
1% 0 0 X 0 |Av VX Tox
0 0 W 0 T)\Aw wT T

(8-1)

where X, V, W, and T are diagonal matrices corresponding to the vectors x, v, w, and t
respectively. The residual vectors on the far right side of the equation are:

* 1y the dual residual

* 1y, the primal residual

* 1, the upper bound residual

* T, the lower bound complementarity residual

* 1, the upper bound complementarity residual

The iterative display reports these quantities:
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Primal infeasibility = ||rp ||1 + "’"ub ||1

Dual infeasibility = ||rd||°° .

To solve “Equation 8-1”, first convert it to the symmetric matrix form

2

where

D=X1v+TW

R=-rg— XY +T ry + T Wryp.

All the matrix inverses in the definitions of D and R are simple to compute because the
matrices are diagonal.

To derive “Equation 8-2” from “Equation 8-1”, notice that the second row of

“Equation 8-2” is the same as the second matrix row of “Equation 8-1". The first row of
“Equation 8-2” comes from solving the last two rows of “Equation 8-1” for Av and Aw, and
then solving for At.

“Equation 8-2” is symmetric, but it is not positive definite because of the -D term.
Therefore, you cannot solve it using a Cholesky factorization. A few more steps lead to a
different equation that is positive definite, and hence can be solved efficiently by Cholesky
factorization.

The second set of rows of “Equation 8-2” is
AAx = —Ty

and the first set of rows is
~DAx + ATAy =-R.

Substituting

Ax=D"'ATAy+ DR
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gives

An-12T a0 _An-11_
AD'ATAy=-AD'R-r,. (83

Usually, the most efficient way to find the Newton step is to solve “Equation 8-3” for Ay
using Cholesky factorization. Cholesky factorization is possible because the matrix
multiplying Ay is obviously symmetric and, in the absence of degeneracies, is positive
definite. Afterward, to find the Newton step, back substitute to find Ax, At, Av, and Aw.

However, when A has a dense column, it can be more efficient to solve “Equation 8-2”
instead. The linprog interior-point algorithm chooses the solution algorithm based on
the density of columns.

For more algorithm details, see Mehrotra [6].

After calculating the corrected Newton step, the algorithm performs more calculations to
get both a longer current step, and to prepare for better subsequent steps. These multiple
correction calculations can improve both performance and robustness. For details, see
Gondzio [4].

The predictor-corrector algorithm is largely the same as the full quadprog 'interior-
point-convex' version, except for the quadratic terms. See “Full Predictor-Corrector”
on page 10-6.

Stopping Conditions

The predictor-corrector algorithm iterates until it reaches a point that is feasible (satisfies
the constraints to within tolerances) and where the relative step sizes are small.
Specifically, define

p= max(1,||A”,||f||,”5")-

The algorithm stops when all of these conditions are satisfied:

"rP "1 +"rub"1 < pTolCon

[74]l < pTolFun

r, < TolFun,

where
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r, = max (min (o], [o;]), min ([0, |e0y])) -
l

r, essentially measures the size of the complementarity residuals xv and tw, which are
each vectors of zeros at a solution.

Interior-Point-Legacy Linear Programming
Introduction

The default interior-point-legacy method is based on LIPSOL ([52]), which is a variant of
Mehrotra's predictor-corrector algorithm ([47]), a primal-dual interior-point method.

Main Algorithm

The algorithm begins by applying a series of preprocessing steps (see “Preprocessing” on
page 8-11). After preprocessing, the problem has the form

min f Ty such that
x

{A-xzb
0<x<u (8-4)

The upper bounds constraints are implicitly included in the constraint matrix A. With the
addition of primal slack variables s, “Equation 8-4” becomes

A-x=b
min fo suchthat § x+s=u
x
x>0,s>0.

which is referred to as the primal problem: x consists of the primal variables and s
consists of the primal slack variables. The dual problem is

AT y—w+z=f

mabey—uTw such that
220, w=>0,

(8-6)

where y and w consist of the dual variables and z consists of the dual slacks. The
optimality conditions for this linear program, i.e., the primal “Equation 8-5” and the dual
“Equation 8-6”, are
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A-x-b
XxX+s—u
F(xyyazys}w): AT'y_U)+Z_f :0}
XiZi
Siwi

x20,220,s20, w=0, (8-7)

where x;z; and s;w; denote component-wise multiplication.

The quadratic equations x;z; = 0 and s;w; = 0 are called the complementarity conditions
for the linear program; the other (linear) equations are called the feasibility conditions.
The quantity

xTz + sTw

is the duality gap, which measures the residual of the complementarity portion of F when
(x,z,s,w) = 0.

The algorithm is a primal-dual algorithm, meaning that both the primal and the dual
programs are solved simultaneously. It can be considered a Newton-like method, applied
to the linear-quadratic system F(x,yz,5,w) = 0 in “Equation 8-7”, while at the same time
keeping the iterates x, z, w, and s positive, thus the name interior-point method. (The
iterates are in the strictly interior region represented by the inequality constraints in
“Equation 8-5".)

The algorithm is a variant of the predictor-corrector algorithm proposed by Mehrotra.
Consider an iterate v = [x;y;z;5;w], where [x;z;s;w] > 0 First compute the so-called
prediction direction

Av, = —(FT (v))_1 F(),

which is the Newton direction; then the so-called corrector direction

Ay, :—(FT(U))_1 F(U+ Avp)—,ue,

where 11 > 0 is called the centering parameter and must be chosen carefully. é is a zero-
one vector with the ones corresponding to the quadratic equations in F(v), i.e., the

8-9
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perturbations are only applied to the complementarity conditions, which are all quadratic,
but not to the feasibility conditions, which are all linear. The two directions are combined
with a step length parameter a > 0 and update v to obtain the new iterate v*:

vt = v+a(Avp +Avc),

where the step length parameter a is chosen so that

vt = [x+;y+;z+;s+;w+]
satisfies
[xt;z%;st;wt] > 0.

In solving for the preceding predictor/corrector directions, the algorithm computes a
(sparse) direct factorization on a modification of the Cholesky factors of A-AT. If A has
dense columns, it instead uses the Sherman-Morrison formula. If that solution is not
adequate (the residual 